当前位置: 首页 > 工业控制产品 > 运动控制 > 交流电动机 > 交流同步电动机

类型分类:
科普知识
数据分类:
交流同步电动机

异步电动机变频调速一拖二控制技巧

发布日期:2022-04-18 点击率:41

<script var cpro_id = "u1457042";

<iframe id="iframeu1457042_0" ?rdid=1457042&dc=2&di=u1457042&dri=0&dis=0&dai=3&ps=425x362&dcb=BAIDU_SSP_define&dtm=BAIDU_DUP_SETJSONADSLOT&dvi=0.0&dci=-1&dpt=none&tsr=0&tpr=1459706441606&ti=%E5%BC%82%E6%AD%A5%E7%94%B5%E5%8A%A8%E6%9C%BA%E5%8F%98%E9%A2%91%E8%B0%83%E9%80%9F%E4%B8%80%E6%8B%96%E4%BA%8C%E6%8E%A7%E5%88%B6%E6%8A%80%E5%B7%A7_%E7%94%B5%E6%B0%94%E8%87%AA%E5%8A%A8%E5%8C%96%E6%8A%80%E6%9C%AF%E7%BD%91&ari=1&dbv=0&drs=1&pcs=645x335&pss=970x426&cfv=0&cpl=22&chi=50&cce=true&cec=gbk&tlm=1396397508&ltu=http%3A%2F%2Fwww.dqjsw.com.cn%2Fdiangongdianzi%2Fdianlidiangong%2Fdiandongji%2F96893.html&ecd=1&psr=1366x768&par=1366x728&pis=-1x-1&ccd=24&cja=false&cmi=34&col=zh-CN&cdo=-1&tcn=1459706442&qn=1a59daaa3ab6aa56&tt=1459706441585.142.169.169" vspace="0" hspace="0" marginwidth="0" marginheight="0" scrolling="no" style="border:0; vertical-align:bottom;margin:0;" allowtransparency="true" align="center,center" width="200" height="200" frameborder="0">

采用一台电动机变频运行,另一台电动机作备用;当变频器故障时能切换至工频运行,通过调节阀门开度调节流量,满足工艺要求的方案也不理想。为此考 虑采用一台西门子变频器带两台电机,并与西门子S7-200系列PLC、继电器配合实现电动机的起动、调速、切换控制,即变频一拖二控制。通常情况下,一台电机变频运行,另一台作备用。一般,变频故障切换旋钮在投入位置,当变频器故障时,当前运行的电机能自动切换到工频运行;这时变频控制回路可以退出,方便了维修。
为了达到生产过程自动化的要求,根据公司电气设备现状,拟将两台110 kW 电机控制系统进行改造。采用一台变频器分别拖动两台电机,并与可编程控制器PLC、继电器有机组合,实现自动控制(变频一拖二控制)。
1 设计原理
1.1 主回路设计方案
如图1,两台110 kW 异步电动机MA、MB,每台电机有工频、变频两种运行方式,两台电机共用一台变频器。正常运行时为一开一备,一台电机变频运行,另一台电机作备用。总电源开关QF出口分两路,一路供工频电,又分支两路(二、三回路)分别供电机MA、MB 工频控制;另一路供变频器,其输出也分支两路(一、四回路)分别供电机MA、MB。由于变频器自身具有热保护功能,所以变频一、四回路不再外接热过载继电器,而在工频二、三回路加设电动机保护器FH。并在电机MA、MB回路装电流互感器CT,外接电流表以监测电机的运行电流。考虑到从变频器到电机电缆线路较长,变频器运行时将产生较强的高次谐波,对电机运行不利。因此,在变频器主出线侧装电抗器来抑制谐波的
影响。
由于电机一般运行在变频状态下,工频状态只是在变频器故障时运行。从安全运行的角度考虑,控制回路电源取自工频空气开关2QF、3QF 下口较为理想,如图示La、Lb。这样在变频回路故障、检修停电更换元器件时,控制电源不受影响,确保工业生产的稳定运行。同理,在变频电源侧装一只400 A的隔离开关GK,保证在变频器故障下能断开变频侧主回路电源,以便变频器维修而不影响电机工频运行。
我公司使用的变频器类型较多,有西门子、ABB、施耐德、日产、国产的等。由于对西门子变频器的原理、参数、技术特性、故障处理较为熟悉,并且西门子变频器质量较好、运行较为稳定,因此变频器选型为西门子ECO1-110K/3 型。其端子5、9 接“变频器起停”信号,端子19、20 为“变频器故障”继电器5K输出端,端子21、22 为“变频器运行”继电器6K 输出端,端子3、4 接模拟量输入(4~20 m A), 端子12、13接模拟量输出。并且保证变频器可靠接地。
1.2 控制回路设计方案
1.2.1 MA电机控制回路
如图2 所示,控制回路电源采用AC 220 V,MA电机有变频、工频两套回路,停止按钮共用,启动按钮各自设置。并保证变频回路(变频器、PLC 等)故障时能启动工频回路运行。
变频回路为了实现自动控制,选用中间继电器1K,作MA电机的启动信号。将1K的常开接点引至PLC输入端。为了保证安全运行,MA 变频回路须与MB 回路互锁,即接入2 KM、4 KM 接触器动断辅助触点。当CPU检测到MA变频启动各信号正常时,中间继电器3K 得电,其动合接点闭合,MA变频接触器1KM闭合。
工频回路MA 工频控制回路须与MA 变频回路互锁,即串接1KM一常闭接点。在启动按钮两端并接工频接触器2KM 一组常开接点,作为自锁保护。可直接工频启动MA 电机。在启动按钮两侧再并接继电器7K 一动合接点,可实现PLC 程序控制启动MA工频回路。
以上回路必须保证各回路间的互锁,确保只有一台电机在一种状态下运行。
1.2.2 MB电机控制回路
如图3,控制回路与MA控制回路相似。
工频回路MB工频控制回路须与MB变频回路互锁,即串接4KM一常闭接点。在启动按钮两端并接工频接触器3KM一组常开接点,作为自锁保护。可直接工频启动MB电机。在启动按钮两侧再并接继电器8K一动合接点,可实现PLC 程序控制启动MB工频回路。
变频回路为实现自动控制,选用中间继电器2K,作MB 电机的启动信号。将2K的常开接点引至PLC 输入端。为了保证安全运行,MB变频回路须与MA 回路互锁,即接入1KM、3KM接触器动断辅助触点。当CPU检测到MB变频启动各信号正常时,中间继电器4K得电,其动合接点闭合,MB 变频接触器4KM闭合。
1.2.3 可编程控制器PLC选型及设计方案
如图4 所示,可编程控制器(PLC)选型为西门子S7-200 系列,CPU 为224,它具有15 路直流24V 输入,9 路继电器(~220V)输出,能满足设计要求。原理接线如图5 所示。I0. 0~I0. 7、I1.
0~I1.5 为输入端子,Q0.0~Q0.7、Q1.0、Q1.1 为输出端子。
I0.0 接1KM 启动信号(中间继电器1K的动合触点);
1)MA变频I0.1 接4KM 启动信号(中间继电器2K 的动合触点);
2)MB变频I0.2 接1KM 闭合信号(接触器1KM 的动合触点);
3)MA变频I0.3接4KM闭合信号(接触器4KM的动合触点);
4)MB变频转换开关1SA作为A 泵变频故障时自动切换至A泵工频运行信号,正常运行时取其常开接点,接至I0.4。
转换开关2SA作为B泵变频故障时自动切换至B泵工频运行信号,正常运行时取其常开接点,接至I0.5。
I1.0接2KM闭合信号(接触器2KM的动合触点)1)MA工频I1.0接4KM 闭合信号(接触器4KM
的动合触点);
2)MB工频端子I1.0、I1.1 分别接变频器故障信号(继电器5K的动合接点)、变频器运行信号(继电器6K的动合接点)。
直流24V电源采用CPU224的内置直流24V电源。
输出端子Q0.0接继电器3K, 控制MA 电机1KM变频启动。Q0.1接红色指示灯3HD,作为A泵故障切
换指示。Q0.2接继电器7K ,控制MB电机2KM工频启动。同理,输出端子Q0.4、Q0.5、Q0.6 分别接继电器4K、指示灯4HD、继电器8K,作为MB 电机变频、工频启动控制。
端子Q0.7、3L分别接变频器端子5、9 ,作为变频器起停控制信号。

下一篇: PLC、DCS、FCS三大控

上一篇: 索尔维全系列Solef?PV