当前位置: 首页 > 工业控制产品 > 运动控制 > 伺服电机

类型分类:
科普知识
数据分类:
伺服电机

数控系统伺服电机控制技术发展动向

发布日期:2022-10-09 点击率:37

  现代电机控制理论发展使机床数控伺服系统实现交流化、数字化、智能化机床数控系统中,常用的伺服电机和控制系统有:   

     (一)开环控制系统

     采用步进电机作为驱动器件,无须位置和速度检测器件,也没有反馈电路,控制电路简单,价格低廉。步进电机和普通电机的区别主要就在于它的脉冲控制,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。

     (二)半闭环和闭环位置控制系统

     采用直流伺服电机或交流伺服电机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,也可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。

     70年代,美国GATTYS公司发明了机床用直流力矩伺服电机,从此各国数控机床开始大量采用直流伺服电机驱动。开环系统逐渐由闭环系统取代。以直流伺服电机作为驱动器件的直流伺服系统,控制电路比较简单,价格较低。其主要缺点是直流伺服电机内部有机械换向装置,碳刷易磨损,维修工作量大,运行时易起火花,给电机的转速和功率的提高带来较大的困难。交流异步电机虽然价格便宜、结构简单,但早期由于控制性能差,所以很长时间没有在数控系统上得到应用。随着电力电子技术和现代电机控制理论的发展,1971年,德国西门子的Blaschke发明了交流异步机的矢量控制法;1980年,德国人Leonhard为首的研究小组在应用微处理器的矢量控制的研究中取得进展,使矢量控制实用化。从70年代末,数控机床逐渐采用异步电机为主轴驱动电机。

     如果把直流电机结构进行“里翻外”的处理,即把电枢绕组装在定子,转子为永磁部分,并以转子轴上的编码器测出磁极位置控制电子开关进行电子换相,这就构成了永磁无刷直流电机。这种交流伺服电机具有良好的伺服性能。从80年代开始,逐渐应用在数控系统的进给驱动装置上。交流伺服系统采用交流伺服电机作为驱动器件,可以和直流伺服电机一样构成高精度、高性能的半闭环或全闭环控制系统,由于交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,伺服技术取得的突破可以归结为:交流伺服取代直流伺服、数字控制取代模拟控制、或者把它称为软件控制取代硬件控制。这两种突破的结果产生了交流数字驱动系统,应用在数控机床的伺服进给和主轴装置上。由于电力电子技术及控制理论、微处理器等微电子技术的快速发展,软件运算及处理能力的提高,采用高速微处理器和专用数字信号处理器(DSP-DigitalSignalProcessor)的全数字化交流伺服系统出现后,使系统的计算速度大大提高,采样时间大大减少。原来的硬件伺服控制变为软件伺服控制,一些现代控制理论中的先进算法得到实现,进而大大地提高了伺服系统的性能,例如OSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置,网络连接,进一步发挥了它对机床的控制能力和通信速度。这些技术的突破,使伺服系统性能改善、可靠性提高、调试方便、柔性增强,大大推动了高精高速加工技术的发展。

     采用状态观察器和卡尔曼滤波器可以进行电动机参数的在线辨识;采用滑模变结构控制可增强电动机控制系统的鲁棒性。如能将各种智能控制理论有机地结合起来,必将开创交流伺服控制的新天地。如模糊控制和神经元网络控制都不需要精确的对象模型和参数,使系统具有很强的鲁棒性。

     传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。普遍采用的霍尔传感器具有小于1µs的响应时间。交流电动机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器。随着它们的转速、分辨率的不断提高,系统的动态响应、调速范围以及低速性能也相应提高。传统的具有A、B(两相信号的编码器,由于它不能兼顾分辨率和高速度,且信号线太多,从而影响了高精度、高速度的伺服系统的实现。而新型的编码器则克服了上述缺点,如日本FANUC公司生产的脉冲编码器(绝对型),由于它将来自正余弦信号的角度转化成数字量,使它具有4000r/min的高速以及高达1000000p/r或65536p/r的分辨率。另外,伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。而在电动机磁路设计上也作了改进,使电动机旋转更加平滑,再配合高速数字伺服软件,可使电动机即使在小于1µm转动时也显得平滑而无爬行。以IGBT(绝缘栅双极型晶体管)和IPM(智能功率模块)等新型电力电子器件为基础的新一代高载波、低噪声变频器的开发,以及新的控制软件的引入,把变频调速引入了一个全新的领域,使原来仅用于开环控制的变频器演变成了既能用于开环控制,也能用于闭环控制的称之为“通用型驱动器”。以英国的CT公司的Unidrive产品和德国AMK公司的AMKASYN产品为代表,使变频器登上了新的舞台。


下一篇: PLC、DCS、FCS三大控

上一篇: 法如获美国“国防制造