当前位置: 首页 > 工业电气产品 > 端子与连接器 > 线路板连接器 > FFC连接器

类型分类:
科普知识
数据分类:
FFC连接器

pwm双极性调制电路图_单极性与双极性PWM模式介绍 - 信号处理电子电路图

发布日期:2022-04-22 点击率:3759


  PWM控制及SPWM波的生成

  1、PWM控制的基本原理

  PWM(PulseWidthModulaTIon)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。

  面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1.1(1)所示,三个窄脉冲形状不同,但是它们的面积都等于1,当它们分别加在如图1.1.1(2)(a)所示的R-L电路上时,并设其电流i(t)为电路的输出,则其输出响应波形基本相同且如图1.1.1(2)(b)所示。

pwm双极性调制电路图
pwm双极性调制电路图

  2、SPWM法的基本原理

  脉冲幅值相等而脉冲宽度按正弦规律变化而正弦波等效的PWM波称为SPWM(sinusoidalPWM)波形。

pwm双极性调制电路图

  如图1.1.2所示,把正弦半波分成N等份,就可以把正弦半波看成是由N个彼此相连的脉冲序列所组成的波形,这些脉冲宽度都等于N/?,但幅值不等,且脉冲顶部不是水平直线,而是按正弦规律变化的曲线。如果把这些脉冲序列用相同数量的等幅值而不等宽的矩形脉冲来代替,使矩形脉冲的中点和相应的正弦波部分中点重合,且使矩形脉冲和相应的正弦波部分面积相等,则可得图所示的矩形脉冲序列,这就是SPWM波形。

  3、规则采样法

  SPWM的控制就是根据三角载波与正弦调制波的交点来确定逆变器功率开关器件的通断时刻。规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波,其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样其原理如图1.1.3所示。

pwm双极性调制电路图

  单极性和双极性PWM控制逆变电路分析

  电路如图1.2所示,该电路工作时,1V和2V通断互补,3V和4V也通断互补,如在ou正半周,1V导通,2V关断,3V和4V交替通断,且负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。在ou的负半周,让2V保持通态,1V保持断态,3V和4V交替通断,负载电压ou可以得到-dU和零两种电平。

pwm双极性调制电路图

  1、单极性PWM控制方式

  如图1.2.1所示,调制信号ru为正弦波,载波cu在ru的正半周为正极性的三角波,在ru的负半周为负极性的三角波。a)在ru的正半周时,1V保持通态,2V保持断态,当ru》cu时,使4V导、3V关断,ou=dU。当ru《cu时,使4V关断、3V导通,ou=0。b)在ru的负半周时,1V保持断态,2V保持通态。当ru《cu时,使3V导通、4V关断,ou=-dU。当ru》cu时,使3V关断、4V导通,ou=0。

pwm双极性调制电路图

  1.1单极性PWM控制方式

  如图1.2.1所示,调制信号ru为正弦波,载波cu在ru的正半周为正极性的三角波,在ru的负半周为负极性的三角波。a)在ru的正半周时,1V保持通态,2V保持断态,当ru》cu时,使4V导、3V关断,ou=dU。当ru《cu时,使4V关断、3V导通,ou=0。b)在ru的负半周时,1V保持断态,2V保持通态。当ru《cu时,使3V导通、4V关断,ou=-dU。当ru》cu时,使3V关断、4V导通,ou=0。

  1.2双极性PWM控制方式

  如图1.2.2所示,在调制信号ru和载波信号cu的交点的时刻控制各个开关器件的通断。

  a)在ru的半个周期内,三角波载波有正有负,所得的PWM波也有正有负,在ru的一个周期内,输出的PWM波只有±dU两种电平。b)在ru的正负半周,对各个开关器件的控制规律相同。当ru》cu时,1V和4V导通,2V和3V关断,这时如果oi》0,则1V和4V导通,如果oi《0,则1VD和4VD导通,但不管那种情况都是ou=dU。当ru《cu时,2V和3V导通,1V和4V关断,这时如果oi《0,则2V和3导通,如果oi》0,则2VD和3VD导通,但是不管哪种情况都是ou=-dU。

pwm双极性调制电路图


  单极性与双极性PWM模式

  1.单极性PWM模式

  产生单极性PWM模式的基本原理如图6.2所示。首先由同极性的三角波载波信号ut。与调制信号ur,比较(图6.2(a)),产生单极性的PWM脉冲 (图6.2(b));然后将单极性的PWM脉冲信号与图6.2(c)所示的倒相信号UI相乘,从而得到正负半波对称的PWM脉冲信号Ud,如图 6.2(d)所示。

pwm双极性调制电路图

  2.双极性PWM模式

  双极性PWM控制模式采用的是正负交变的双极性三角载波ut与调制波ur,如图6.3所示,可通过ut与ur,的比较直接得到双极性的PWM脉冲,而不需要倒相电路。

pwm双极性调制电路图

  与单极性模式相比,双极性PWM模式控制电路和主电路比较简单,然而对比图6.2(d)和图6.3(b)可看出,单极性PWM模式要比双极性PWM模式输出电压中、高次谐波分量小得多,这是单极性模式的一个优点。

  单极性调制方式的特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压:另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减小了开关损耗。但又不是固定其中一个桥臂始终为低频(输出基频),另一个桥臂始终为高频[载波频率),而是每半个输出电压周期切换工作,即同一个桥臂在前半个周期工作在低频,而在后半周则工作在高频,这样可以使两个桥臂的功率管工作状态均衡,对于选用同样的功率管时,使其使用寿命均衡,对增加可靠性有利。

  双极性调制方式的特点是4个功率管都工作在较高频率(载波频率),虽然能得到正弦输出电压波形,但其代价是产生了较大的开关损耗。

  有限双极性控制ZVZCSPWM全桥变换器

  1、ZVZCS PWM全桥电路有限双极性控制过程分析

  有限双极性控制ZVZCS PWM全桥电路功率部分如图1所示。Q1~Q4四个功率管(内带续流二极管)组成一个全桥电路。其中,Q1、Q2组成超前桥臂,两端分别并联有吸收电容C1、C2,用来实现Q1、Q2的ZVS。L1为高频变压器的漏感。Cb为隔直电容,用来实现滞后臂(由Q3、Q4组成)的ZCS。

  pwm双极性调制电路图

  图1 ZVZCSPWM全桥电路示意图

  在有限双极性方法控制下,Q1~Q4的驱动时序见图2。其中ug1、ug2为脉宽可调的定频变宽脉冲;ug3、ug4为互补方波,频率、脉宽固定。当然考虑到直通的问题,ug3、ug4不能同时为1,要错开一个固定的死区时间。ug1、ug4的上升沿(表示Q1、Q4开始导通)一致,ug2、ug3的上升沿一致。uAB表示加在隔直电容及变压器两端的电压。由于超前桥臂并联电容的存在,变压器端电压在下降时不会突然到零,而是有个过渡过程,其时间取决于并联电容的大小及负载电流等条件。ip为变压器绕组电流。ucb为隔直电容Cb上的电压,其幅值取决于Cb大小及其它条件,Cb越小,ucb幅值越大,ZCS实现得越好,但同时开关管电压应力又增大,因此Cb不能太小,一般要让ucb最大值小于直流输入电压的10%。

  pwm双极性调制电路图

  图2 全桥电路有限双极性控制时序及各变量响应图

  电路工作过程分析如下:

  1)t0时刻Q1、Q4同时导通,变压器原边电流ip开始上升,流向是从Q1到L1、变压器、Cb、Q4。功率从原边流向副边,同时隔直电容Cb上的电压开始上升。为了简化分析,暂不考虑变压器的励磁电流和副边电流Io的波动,因此变压器原边电流ip(t)为

  ip(t)=Ipo=Io/n(1)

  式中:n为变压器原副边匝比。

  当然,实际电路中由于副边整流二极管的反向恢复过程,ip(t)上升沿有一个尖峰,见图2。

  Cb两端电压ucb(t)为

  ucb(t)=-ucbp(2)

  式中:ucbp为电容Cb上最大电压。

  2)在t1时刻Q1关断,Q1的关断是ZVS关断,原边电流ip通过C1(充电)、C2(放电)继续按原方向流动。C2经过一段时间的放电,在t12时刻C2上的电压降到零,Q2上的反并联二极管开始导通续流。此阶段电容C2两端电压uc2(t)变化过程为

  uc2(t)=Ipot/(C1+C2)(3)

  并有

  t12-t1=E(C1+C2)/Ipo(4)

  式中:E为直流输入电压。

  3)由于Cb上的电压作用,在t2时刻环流衰减到零,原边电流变化过程为

  ip(t)=Ipo-ucbpt/L1(5)

  该状态持续时间(即环流时间)为

  t2-t12=IpoL1/ucbp(6)

  此时ucb(t)达到最大值UCbp。由式(2)可近似得到

  t2-t0=2UCbpCb/Ipo(7)

  4)在t2~t23时刻,电容Cb上的能量通过变压器漏感对Q2的输出电容充电,由于时间常数很小,可认为该过程响应速度很快,谐振过程很快结束。稳定时Q2两端电压保持为UCbp。

  5)t23时刻Q4关断,显然,由于此时Q4上电压电流均为零,因此Q4是ZVZCS关断。经一个固定的死区时间后,在t3时刻,Q2、Q3同时导通,由于此时Q2两端电压为UCbp,由设计可保证UCbp《10%E,且环流已衰减到零,因此可近似认为Q2是ZVZCS导通。而Q3是硬开关导通,而且Q3导通时其两端电压大小约为直流输入电压大小。而在普通硬开关工作方式下Q3导通时其端电压是直流输入电压的一半,因此ZVZCS控制模式下Q3导通时输出电容上的能量损耗反而比普通硬开关状态下大,这是这种方法最大的缺点。为了减轻该缺点所带来的不利因素,Q3、Q4可选输出电容较小的功率管如IGBT。

  6)在t3时刻之后电路工作过程和t0~t3时类似,这里就不详细分析了。

  2、全范围实现ZVS和ZCS的约束条件

  由式(2)可以看到,在占空比一定时,隔直电容Cb越小,UCbp越大,由式(6)可看到,变压器漏感越小、ucbp越大,则环流时间越短,因而ZCS实现得越充分。将式(7)代入式(6),并设t12-t0=DT/2(D为占空比,T为开关周期),则有

  t2-t12=4CbL1/DT(8)

  可见在电路参数固定的情况下,环流时间是一个固定值,不依赖于负载。实验也表明,适当减小开关频率,从而使DT变大,可使环流时间t2-t12减小,有利于ZCS的实现。

  由式(4)可看到C1、C2越大,超前桥臂由导通转截止后,C2上电压降到零的过渡时间越长,因而ZVS实现得越好。而且负载越轻(Ipo越小),过渡时间越长。而移相控制由于超前桥臂上下两个开关管的导通基本是互补的,因此在轻载时很难实现开关管的ZVS导通。而相比之下,有限双极性控制方法就显出它的优越性。如当Q1关断后,Q2导通时刻由移相控制时的t12~t3时刻推后到了t3时刻,可以充分保证只有当Q2的续流二极管导通后才使Q2导通,从而保证全范围的ZVS。实验证明,在正确设计好电路参数后,超前桥臂的ZVS实现得相当好。

  3、应用实例

  这种有限双极性控制的ZVZCSPWM全桥变换器,已应用到一种3kW(48V/50A)通信电源模块的设计当中。具体参数为:输入220V/15A;输出56.4V(最大)/53A(最大);开关工作频率60kHz;功率管为IRG4PC50W(高速型IGBT);变压器原副方匝数比为24/4;输出滤波电感40μH;输出滤波电容5000μF。由于没有专用的芯片,因此采用UC3825+CD4042合成所需要的逻辑。原理图如图3所示。

  pwm双极性调制电路图

  图3 有限双极性控制逻辑生成电路实例

  UC3825A是一种峰值电流型控制芯片,在控制环路中加入电流环后,电源具有响应速度快,保护迅速,源效应和负载效应好等优点。模块整机功率因数为0.99,效率90%,重约10kg。该产品已成功运行于某移动通信基站现场。



  什么是整流电路

  “整流电路”(recTIfying circuit)是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

  整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压。习惯上称单向脉动性直流电压。

  整流电路作用原理

  1.半波整流电路

  半波整流电路是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。  变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π 时间内,e2为负半周,变压器次级下端为正;上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在2π~3π时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被“削”掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。

  这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整流是以“牺牲”一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2,此处注意e2是变压器二次端口的有效值,而不是最大值。如变压器得到e2= 单相全桥pwm整流电路及工作原理 ,e2取值为20 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

单相全桥pwm整流电路及工作原理

  2.全波整流电路

  如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

  全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2、Rfz ,两个通电回路。

  全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π间内,e2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2为反向电压,D2 不导通。在π-2π时间内,e2b 对D2为正向电压,D2导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1为反向电压,D1 不导通。

  带平衡电抗器的双反星型可控整流电路带平衡电抗器的双反星形可控整流电路是将整流变压器的两组二次绕组都接成星形,但两组接到晶闸管的同名端相反;两组二次绕组的中性点通过平衡电控器LB连接在一起。

单相全桥pwm整流电路及工作原理

  3.桥式整流电路

  桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成“桥”式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

  整流电路桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz 、D3通电回路,在Rfz ,上形成上正下负的半波整流电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。

  如此重复下去,结果在Rfz ,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。

  三相桥式全控电路TR为三相整流变压器,其接线组别采用Y/Y-12。VT1~VT6为晶闸管元件,FU1~FU6为快速熔断器。TS为三相同步变压器,其接线组别采用△/Y-11。P端为集成化六脉冲触发电路+24V电源输出端,接脉冲变压器一次绕组连接公共端。P1~P6端为集成化六脉冲触发电路功放管V1~V6集电极输出端,分别接脉冲变压器一次绕组的另一端。UC端为移相控制电压输入端。

  三相桥式半控电路三相桥式半控整流电路与三相桥式全控整流电路基本相同,仅将共阳极组VT4,VT6,VT2的晶闸管元件换成了VD4,VD6,VD2整流二极管,以构成三相桥式半控整流电路。

单相全桥pwm整流电路及工作原理

  整流电路的分类

  1.单相整流电路

  图1a为单相半波可控整流电路。图中ug为晶闸管的触发脉冲,其工作过程如下:当u2负半周时,晶闸管不导通。在u2正半周时,不加触发脉冲之前,晶闸管也不导通,只有加触发脉冲之后,晶闸管才导通,这时负载Rd上流过电流。在电流为零时刻,晶闸管自动关断,为下一次触发导通作好准备,如此循环往复,负载上得到脉动的直流电压ud。晶闸管从开始承受正向电压起到开始导通这一角度称为控制

  2.相控电路图

  角,以α表示。这样,只要改变控制角α的大小,即改变触发脉冲出现的时刻,就改变了直流输出电压的平均值。触发脉冲总是在电源周期的同一特定时刻加到晶闸管的控制极上,所以,触发脉冲和电源电压在频率和相位上要配合好,这种协调配合的关系称为同步。图1b为单相桥式可控整流电路。它与单相半波可控整流电路相比,其变压器利用系数较高,直流侧脉动的基波频率为交流基波的二倍,故为小功率场合常用的整流电路之一。 这里,脉波数P的概念很重要。所谓脉波数就是在交流电源的一个周期之内直流侧输出波形的重复次数。通常脉波数越多,直流侧输出越平滑,交流侧电流越接近正弦波。为了增加脉波数,可以增加交流侧相数,但是, 一般相数增加越多,各相的通电时间变得越短,这样会使整流元件与整流变压器副边绕组的利用率变坏,使装置体积变大,成本提高。图1c为单相桥式半控整流电路,由于可控的晶闸管与不控的二极管混合组成,故称半控。F称续流二极管,若直流电压变为负值,它成为直流侧环流的路径,维持输出电压为零。

  单相整流电路比较简单,对触发电路的要求较低,相位同步问题很简单,调整也比较容易。但它的输出直流电压的纹波系数较大。由于它接在电网的一相上,易造成电网负载不平衡,所以一般只用于4kW以下的中小容量的设备上。如果负载较大,一般都用三相电路。

  3.三相整流电路

  当整流容量较大,要求直流电压脉动较小,对快速性有特殊要求的场合,应考虑采用三相可控整流电路。这是因为三相整流装置三相是平衡的,输出的直流电压和电流脉动小,对电网影响小,且控制滞后时间短。图2为三相桥式全控整流电路及其输出电压波形。在理想情况下,电路在任何时刻都必须有两个晶闸管导通,一个是共阳极组的,另一个是共阴级组的,只有它们同时导通才能形成导电回路。T1、T2、T3、T4、T5、T6的触发脉冲互差60°。因此,电路每隔60°有一个晶闸管换流,导通次序为1→2→3→4→5→6,每个晶闸管导通120°。在整流电路合闸后,共阴极和共阳级组各有一个晶闸管导通。因此,每个触发脉冲的宽度应大于60°、小于120°,或用两个窄脉冲等效地代替大于60°的宽脉冲,即在向某一个晶闸管送出触发脉冲的同时,向前一个元件补送一个脉冲,称双脉冲触发。整流输出电压波形如图2 所示。当T1、T6导通时,ud=uab;T1、T2导通时,ud=uac;同理,依次为ubc,uba,uca,ucb,均为线电压的一部分,脉动频率为300Hz,晶闸管T1上的电压uT1波形分为三段,在T1导电的120°中,uT1=0(仅管压降);当T3导通,T1受反向电压关断,uT1=uab;T5导通时,T3关断,uT1=uac。因此晶闸承受的最大正、反向电压为线电压的峰值。

  采用三相全控桥式整流电路时,输出电压交变分量的最低频率是电网频率的6倍,交流分量与直流分量之比也较小,因此滤波器的电感量比同容量的单相或三相半波电路小得多。另外,晶闸管的额定电压值也较低。因此,这种电路适用于大功率变流装置。

  4.多相整流电路

  随着整流电路的功率进一步增大(如轧钢电动机,功率达数兆瓦),为了减轻对电网的干扰,特别是减轻整流电路高次谐波对电网的影响,可采用十二相、十八相、二十四相,乃至三十六相的多相整流电

  5.多相整流电路

  路。图3a为两组三相桥串联组成的十二相整流电路。为了获得十二相波形,每个波头应该错开30°。所以采用三绕组变压器,次级的两个绕组一个接成星形,另一个接成三角形,分别供给两组三相桥。两组整流桥串联后再接到负载。由于两组整流桥输出的电压的相位彼此差30°,因此在负载上得到十二脉波的整流电压,合成电压中最低次谐波频率为600Hz,输出电压ud=ud1+ud2,电流id=id1=id2。图3b是两组三相桥并联组成大电流的十二相整流电路。两桥变压器次级绕组电压依次相差30°。若两组桥的交流线电压相等,各自的控制角也相等,则两组桥的整流平均电压也相等,只要极性相符合,就可以并联运行。但是两组整流电压的瞬时值是不等的,两组电源间会出现交流环流。为了限止环流,延长晶闸管的导通时间,需要加入平衡电抗器,输出电压ud=(ud1+ud2)/2,电流id=id1+id2。

  采用多相整流电路能改善功率因数,提高脉动频率,使变压器初级电流的波形更接近正弦波,从而显著减少谐波的影响。理论上,随着相数的增加,可进一步削弱谐波的影响。但这样做增加了设备费用,在技术上对精确地得到相同的控制角提出了较严格的要求。因而需对方案的技术经济指标进行全面分析,最后作出选择。

  6.选择整流电路

  选择整流电路时,主要从电性能好、结构简单、经济实用、对电网影响小等方面考虑,合理选用

  pwm整流电路简介

  PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传 统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输入电流非常接近正弦波,且和输入电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。

  单相全桥PWM整流电路

单相全桥pwm整流电路及工作原理_单相全桥pwm的逆变电路

  图单相全桥PWM整流电路

  图给出了单相PWM整流电路的原理框图。在UPS中,图中的负载即为逆变器和蓄电池。同SPWM逆变电路控制输出电压相类似,可在PWM整流电路的交流输入端AB之间产生一个正弦波调制PWM波uAB,uAB中除了含有与电源同频率的基波分量外,还含有与开关频率有关的高次谐波。由于电感Ls的滤波作用,这些高次谐波电压只会使交流电流is产生很小的脉动。如果忽略这种脉动,is为频率与电源频率相同的正弦波。在交流电源电压us一定时,is的幅值和相位由uAB中基波分量的幅值及其与us的相位差决定。改变uAB中基波分量的幅值和相位,就可以使is与us同相位。

  单相全桥PWM整流电路的工作原理

单相全桥pwm整流电路及工作原理_单相全桥pwm的逆变电路
单相全桥pwm整流电路及工作原理_单相全桥pwm的逆变电路

  图6-29PWM整流电路的运行方式向量图

  对单相全桥PWM整流电路工作原理的进一步说明

  整流状态下:

  us》0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。

  V2通时,us通过V2、VD4向Ls储能。

  V2关断时,Ls中的储能通过VD1、VD4向C充电。

  us《0时,(V1、VD3、VD2、Ls)和(V4、VD2、VD3、Ls)分别组成两个升压斩波电路。


下一篇: PLC、DCS、FCS三大控

上一篇: 1.5v电池无线话筒制作

推荐产品

更多