当前位置: 首页 > 工业电子产品 > 无源元器件 > MOSFET

类型分类:
科普知识
数据分类:
MOSFET

MOSFET结构及工作原理详解

发布日期:2022-10-09 点击率:36




MOSFET的种类:按导电沟道类型可分为P沟道和N沟道。按栅极电压幅值可分为:耗尽型-当栅极电压为时漏源极之间就存在导电沟道增强型-对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型


(以N沟道增强型为例)

N沟道增强型MOS管结构如图5所示。它以一块低掺杂的P型硅片衬底,利用扩散工艺制作两个高掺杂的N+,并引入两个电极分别为源极S(Source)漏极D(Drain),半导体上制作一层SiO2绝缘层,再在SiO2上面制作一层金属铝Al,引出电极,作为栅极G(Gate)。通常将衬底与源极接在一起使用。这样,栅极和衬底各相当于一个极板,中间是绝缘层,形成电容。当栅-源电压变化时,将改变衬底靠近绝缘层处感应电荷的多少,从而控制漏极电流的大小。


(N沟道增强型为例)

  • 当栅-源之间不加电压时即VGS=0时,源漏之间是两只背向的PN结。不管VDS极性如何,其中总有一个PN结反偏,所以不存在导电沟道。

  • UDS=0且UGS>0时,由于SiO2的存在,栅极电流为零。但是栅极金属层将聚集正电荷.它们排斥P型衬底靠近 SiO2一侧的空穴,使之剩下不能移动的负离子区形成耗尽层,如图6所示


  • UGS增大时,一方面耗尽层增宽,另一方面将衬底的自由电子吸引到耗尽层绝缘层之间,形成一个N型薄层,称为反型层,如图7所示。这个反型层就构成了漏-源之间的导电沟道。使沟道刚刚形成的栅-源电压称为开启电压UGS(th)/VTUGS电压越大,形成的反层型越厚,导电沟道电阻越小



  • VGS>VT且VDS较小时,基本MOS结构的示意图如图8-1所示。图中反型沟道层的厚度定性地表明了相对电荷密度,这时的相对电荷密度在沟道长度方向上为一常数。相应的ID-VDS特性曲线如图8-1所示。



  • VGS>VT且VDS增大时,由于漏电压增大漏端附近的氧化层压降减小,这意味着漏端附近的反型层电荷密度也将减小。漏端的沟道电导减小,从而ID-VDS特性曲线的斜率减小,如图8-2所示。



  • VGS>VT且VDS增大到漏端的氧化层压降等于VT时,漏极处的反型层电荷密度为零,此时漏极处的电导为零,这意味着ID-VDS的特性曲线的斜率为零,称为预夹断,如图8-3所示。



  • VGS>VT且VDS>VDS(sat)时,沟道中反型电荷为零的点移向源端。如果UDS继续增大,夹断区随之延长,如图所示,而且UDS的增大部分几乎全部用于克服夹断区对漏极电流的阻力,漏电流ID为一常数,这种情形在ID-VDS对应于饱和区(恒流区),如图8-4所示。



漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs。图中随着VGS增大,ID的斜率增大。原因是由于VGS增大,形成的反层型越厚,导通沟道电阻越小ID增长速度越快MOSFET有三个工作区域截止区饱和区非饱和区,对应的输出特性曲线如图10所示。若电力 MOSFET工作在开关状态,即在截止区非饱和区之间来回转换 <p style="text-align:justify;color:#333333;font-family:-apple-system, BlinkMacSystemFont, " font-size:17px;background-color:#ffffff;"="">  



欢迎关注公众号:半导体之芯

添加微信号:semisilicon,加入半导体行业交流群。




下一篇: PLC、DCS、FCS三大控

上一篇: 如何利用现代嵌入式开

推荐产品

更多