当前位置: 首页 > 传感测量产品 > 工业传感器 > 图像传感器

类型分类:
科普知识
数据分类:
图像传感器

cmos图像传感器应用:CMOS图像传感器科普

发布日期:2022-10-09 点击率:45


cmos图像传感器应用:CMOS图像传感器科普  第1张

cmos图像传感器应用:CMOS图像传感器科普

展开全文
来源:转载自公众号「驭势资本」,谢谢
1873年,科学家约瑟·美(Joseph May)及伟洛比·史密夫(WilloughbySmith)就发现了硒元素结晶体感光后能产生电流,由此,电子影像发展开始,随着技术演进,图像传感器性能逐步提升。
1.20世纪50年代——光学倍增管(Photo Multiplier Tube,简称PMT)出现。
2.1965年-1970年,IBM、Fairchild等企业开发光电以及双极二极管阵列。
3.1970年,CCD图像传感器在Bell实验室发明,依靠其高量子效率、高灵敏度、低暗电流、高一致性、低噪音等性能,成为图像传感器市场的主导。
4.90年代末,步入CMOS时代。
图像传感器的历史沿革——PMT
1.光电倍增管(简称光电倍增管或PMT),真空光电管的一种。工作原理是:由光电效应引起,在PMT入射窗处撞击光电阴极的光子产生电子,然后由高压场加速,并在二次加工过程中在倍增电极链中倍增发射。
2.光电倍增管是一种极其灵敏的光检测器,可探测电磁波谱紫外,可见和近红外范围内光源,提供与光强度成比例的电流输出,广泛应用于验血,医学成像,电影胶片扫描(电视电影),雷达干扰和高端图像扫描仪鼓扫描仪中。
图像传感器的历史沿革——CCD
1.数字成像始于1969年,由Willard Boyle和George E. Smith于AT&T贝尔实验室发明。
2.最初致力于内存→“充电'气泡'设备”,可以被用作移位寄存器和区域成像设备。
3.CCD是电子设备,CCD在硅芯片(IC)中进行光信号与电信号之间的转换,从而实现数字化,并存储 为计算机上的图像文件。
4.2009年, Willard Boyle和George E. Smith获得诺贝尔物理学奖。
国际空间站使用CCD相机
1.1997年,卡西尼国际空间站使用CCD相机(广角和窄角)
2.美国宇航局局长丹尼尔戈尔丁称赞CCD相机“更快,更好,更便宜”;声称在未来的航天器上减少质量,功率,成本,都需要小型化相机。而电子集成便是小型化的良好途径,而基于MOS的图像传感器便拥有无源像素和有源像素(3T)的配置。
图像传感器的历史沿革——CMOS图像传感器
1.CMOS图像传感器使得“芯片相机”成为可能,相机小型化趋势明显。
2.2007年,Siimpel AF相机模型的出现标志着相机小型化重大突破。
3.芯片相机的崛起为多个领域(车载,军工航天、医疗、工业制造、移动摄影、安防)等领域的技术创新提供了新机遇。
CMOS图像传感器走向商业化
1.1995年2月,Photobit公司成立,将CMOS图像传感器技术实现商业化。
2.1995-2001年间,Photobit增长到约135人,主要包括:私营企业自筹资金的定制设计合同、SBIR计划的重要支持(NASA/DoD)、战略业务合作伙伴的投资,这期间共提交了100多项新专利申请。
3.CMOS图像传感器经商业化后,发展迅猛,应用前景广阔,逐步取代CCD成为新潮流。
CMOS图像传感器的广泛应用
2001年11月,Photobit被美光科技公司收购并获得许可回归加州理工学院。与此同时,到2001年,已有数十家竞争对手崭露头角,例如Toshiba,STMicro,Omnivision,CMOS图像传感器业务部分归功于早期的努力促进技术成果转化。后来,索尼和三星分别成为了现在全球市场排名第一,第二。后来,Micron剥离了Aptina,Aptina被ON Semi收购,目前排名第4。CMOS传感器逐渐成为摄影领域主流,并广泛应用于多种场合。
CMOS图像传感器发展历程70年代:Fairchild
80年代:Hitachi
80年代初期:Sony
1971年:发明FDA&CDS技术
80年中叶:在消费市场上实现重大突破;
1990年:NHK/Olympus,放大MOS成像仪(AMI),即CIS1993年:JPL,CMOS有源像素传感器,1998年:单芯片相机,2005年后:CMOS图像传感器成为主流。
CMOS图像传感器技术简介
CMOS图像传感器CMOS图像传感器(CIS)是模拟电路和数字电路的集成。主要由四个组件构成:微透镜、彩色滤光片 (CF)、光电二极管(PD)、像素设计。
1.微透镜:具有球形表面和网状透镜;光通过微透镜时,CIS的非活性部分负责将光收集起来并将其聚焦到彩色滤光片。
2.彩色滤光片(CF):拆分反射光中的红、绿、蓝 (RGB)成分,并通过感光元件形成拜尔阵列滤镜。
3.光电二极管(PD):作为光电转换器件,捕捉光并转换成电流;一般采用PIN二极管或PN结器件制成。
4.像素设计:通过CIS上装配的有源像素传感器(APS)实现。APS常由3至6个晶体管构成,可从大型电容阵列中获得或缓冲像素,并在像素内部将光电流转换成电压,具有较完美的灵敏度水平和的噪声指标。
Bayer阵列滤镜与像素1.感光元件上的每个方块代表一个像素块,上方附着着一层彩色滤光片(CF),CF拆分完反射光中的RGB成分后,通过感光元件形成拜尔阵列滤镜。经典的Bayer阵列是以2x2共四格分散RGB的方式成像,Quad Bayer阵列扩大到了4x4,并且以2x2的方式将RGB相邻排列。
2.像素,即亮光或暗光条件下的像素点数量,是数码显示的基本单位,其实质是一个抽象的取样,我们用彩色方块来表示。
3.图示像素用R(红)G(绿)B(蓝)三原色填充,每个小像素块的长度指的是像素尺寸,图示尺寸为0.8μm。
Bayer阵列滤镜与像素滤镜上每个小方块与感光元件的像素块对应,也就是在每个像素前覆盖了一个特定的颜色滤镜。比如红色滤镜块,只允许红色光线投到感光元件上,那么对应的这个像素块就只反映红色光线的信息。随后还需要后期色彩还原去猜色,最后形成一张完整的彩色照片。感光元件→Bayer滤镜→色彩还原,这一整套流程,就叫做Bayer阵列。
前照式(FSI)与背照式(BSI)早期的CIS采用的是前面照度技术FSI(FRONT-SIDE ILLUMINATED),拜尔阵列滤镜与光电二极管(PD)间夹杂着金属(铝,铜)区,大量金属连线的存在对进入传感器表面的光线存在较大的干扰,阻碍了相当一部分光线进入到下一层的光电二极管(PD),信噪比较低。技术改进后,在背面照度技术BSI(FRONT-SIDE ILLUMINATED)的结构下,金属(铝,铜)区转移到光电二极管(PD)的背面,意味着经拜尔阵列滤镜收集的光线不再众多金属连线阻挡,光线得以直接进入光电二极管;BSI不仅可大幅度提高信噪比,且可配合更复杂、更大规模电路来提升传感器读取速度。
CIS参数——帧率帧率(frame rate):以帧为单位的位图图像连续出现在显示器上的频率,即每秒能显示多少张图片。而想要实现高像素CIS的设计,很重要的一点就是Analog电路设计,像素上去了,没有匹配的高速读出和处理电路,便无办法以高帧率输出出来。
索尼早于2007年chuan'gan发布了首款Exmor传感器。Exmor传感器在每列像素下方布有独立的ADC模数转换器,这意味着在CIS芯片上即可完成模数转换,有效减少了噪声,大大提高了读取速度,也简化了PCB设计。
CMOS图像传感器的应用
CMOS图像传感器全球市场规模
2017年为CMOS图像传感器高增长点,同比增长达到20%。2018年,全球CIS市场规模155亿美元,预计2019年同比增长10%,达到170亿美元。
目前,CIS市场正处于稳定增长期,预计2024年市场逐渐饱和,市场规模达到240亿美元。
CIS应用——车载领域1.车载领域的CIS应用包括:后视摄像(RVC),全方位视图系统(SVS),摄像机监控系统(CMS),FV/MV,DMS/IMS系统。2.汽车图像传感器全球销量呈逐年增长趋势。
3.后视摄像(RVC)是销量主力军,呈稳定增长趋势,2016年全球销量为5100万台,2018年为6000万台,2019年预计达到6500万台。
4.FV/MV全球销量增长迅速,2016年为1000万台,2018年为3000万台,此后,预计FV/MV将依旧保持迅速增长趋势,预计2019年销量可达4000万台,2021可达7500万台,直逼RVC全球销量。
车载领域——HDR技术方法1.HDR解决方案,即高动态范围成像,是用来实现比普通数位图像技术更大曝光动态范围。
2.时间复用。相同的像素阵列通过使用多个卷帘(交错HDR)来描绘多个边框。好处:HDR方案是与传统传感 器兼容的最简单的像素技术。缺点:不同时间发生的捕获导致产生运动伪影。
3.空间复用。单个像素阵列帧被分解为多个,通过不同的方法捕获:1.像素或行级别的独立曝光控制。优点:单帧中的运动伪影比交错的运动伪影少。缺点:分辨率损失,且运动伪影仍然存在边缘。2.每个像素共用同一微透镜的多个光电二极管。优点:在单个多捕获帧中没有运动伪影;缺点:从等效像素区域降低灵敏度。
4.非常大的全井产能。
车载领域——闪变抑制技术1.多个集成周期(时间多路传输)。在每个整合期内对光电二极管充电进行多次进行采样,样品光电二极管比LED源频率更高。
2.多个光电二极管(空间多路复用)。使用较大的光电二极管捕捉较低的轻松的场景;使用较小的不灵敏光电二极管在整个帧时间内集成(减轻LED闪烁)。
3.每个像素由两个光电二极管构成。其中包含一个大的灵敏光电二极管和一个小的不灵敏光电二极管,小型不灵敏光电二极管可在整帧中合并,从而减轻LED闪烁。优势在于有出色的闪变抑制、计算复杂度低;劣势在于更大更复杂的像素架构、更复杂的读数和电路定时、大型光电二极管和小型光电二极管和之间的光谱灵敏度不匹配。
车载领域——阵列摄像机1.阵列摄像机是一种新兴的摄像机技术,是指红外灯的内核为LED IR Array的高效长寿的红外夜视设备,可能是可行的LED检测解决方案。
2.用于LED检测的低灵敏度摄像头可以实现图像融合的组合输出,并能够实现单独输出,或同时输出。主要优势在于亮度高、体积小、寿命长,效率高,光线匀。
3.目前,阵列摄像机还面临着诸多挑战。首先,汽车光学对准误差难以保持温度范围;其次,图像融合面向应用和复杂的计算;最后,高灵敏度和低灵敏度图像之间难以融合.
车载领域——机器视觉传感器技术趋势全局快门。CMOS传感器有两种快门方式,卷帘快门和全局快门。卷帘快门通过对每列像素使用A/D来提高读取速度,每列像素数量可达数千。任何一个转换器数字化的像素总数显著减少,从而缩短了读取时间,提高了帧速率。但整个传感器阵列仍必须转换为一个一次排,这导致每行读出之间的时间延迟很小。和机械式焦平面快门一样,卷帘快门对高速运动的物体会产生明显的变形。而且因为其扫描速度比机械式焦平面快门慢,变形会更加明显;全局快门则大大改善了应用于高度运动对象时的变形问题。
改进的近红外(NIR)响应、高灵敏度滤色片阵列(RCCB)、数据加密处理、更高的帧速率、集成传感和 处理、3D成像。
CIS应用——手机领域
尽管2019智能手机销量低迷,手机图像传感器的销售也可实现约20%的增长。
随着多镜头相机变得越来越普及,以及传感器尺寸的增加。未来所有智能手机制造商都会发布具有比以往更具价值的传感器型号。
手机领域——手机摄像头发展史主摄像头:第一部拍照手机——智能手机——双摄/多摄:2000年,夏普首次推出可拍照的手机;随后智能手机时代到来,主摄像头素质不断提升;目前,双摄/多摄已成为主流。
前置摄像头:自拍——3D-sensing:前置摄像头素质同步提升,目前越来越多厂商加入人脸识别功能。
手机领域——手机摄像模组摄像模组构成:CMOS——决定照片质量的关键因素
手机领域——主摄像素升级
手机领域——CMOS迭代升级
1.随着技术的发展,越来越多的手机开始注重拍照的硬件升级。摄像头和CMOS成为了产品突出差异性的卖点之一。抛开镜头差异,成像质量与CMOS大小成正比,主摄像素提升推动CMOS迭代升级。
2.随着技术的发展,手机的CMOS也在日益增大,1/1.7英寸级的CMOS如今成为手机摄像头传感器的新选择。而更多手机也用上了1/2.3英寸级的传感器。
3.作为手机CMOS最大的上游供应商,也研发出了堆栈结构的CMOS。它在传统的感光层与底部电路之间增加了一层DRAM动态存储器,从而让感光元件具备短时间拍摄大数据量影像的能力。
手机领域——光学变焦趋势手机摄像头过去以像素升级为主;受CMOS尺寸限制,手机摄像开始注重变焦能力。
变焦有光学变焦与数码变焦两种。光学变焦通过光学原理调整焦距,成像画质无损。数码变焦就是通过软件算法来放大/缩小,通过插值计算,成像有损,有较多噪点。为了进一步提升手机成像素质,注重变焦能力;而传统专业相机的光学系统无法移植到手机上。手机变焦往往会采用“双摄变焦”,采用两个定焦镜头,利用其物理焦距的不同,实现变焦效果;显然,单摄已经无法满足对光学变焦的需求了。
手机领域——第四个摄像头:3D-sensing目前主流的3D深度摄像主流有两种种方案:结构光、TOF。iPhone采用前者,华为采用后置。
结构光(Structured Light):结构光投射特定的光信息到物体表面后,由摄像头采集。根据物体造成的光信号的变化来计算物体的位置和深度等信息,进而复原整个三维空间。
TOF(Time Of Flight):TOF系统是一种光雷达系统,可从发射极向对象发射光脉冲,接收器则可通过计算光脉冲从发射器到对象,再以像素格式返回到接收器的运行时间来确定被测量对象的距离。
手机领域——手机摄像模组数量
单只手机摄像模组需求量增加从传统的单摄,到双摄市场渗透率逐渐成为市场主流,再到三摄、全隐藏式摄像头、3D摄像头的创新式开拓,单只手机摄像模组的需求看涨。
iPhone X、小米8、OPPO FIND X、三星Galaxy S9+单 只摄像模组需求量均为4,;此外,华为P20 Pro和Mate20  Pro均配备5组摄像模组。
手机领域——多摄带动CMOS用量提升根据Yole的统计显示,平均每部智能手机CMOS图像传感器数量在2024年将达到3.4个,年复合增长率达到6.2%。
手机摄像头数量增加,CIS出货量成倍增长。为了提高照相画质,手机引入了双摄、甚至三摄、四摄。
安防领域——视频监视技术发展历程闭路电视监控系统发展历程:录像带录像机(VCR)→数字视频录像机(DVR)→网络视频录像机(NVR)。视频监控系统越来越复杂,性能也不断升级。
安防领域——当前监控摄像机类型高清摄像头中使用的图像传感器对分辨率的要求较高,在60帧/秒等高帧率下能够实现720P或1080P的清晰度。宽动态范围摄像机的芯片上集成宽动态范围摄像技术以及图像处理技术,能在极暗和极亮环境下拍摄。
3D立体摄像级具有在动态光环境中保持追踪精度的能力,可与视频分析技术配合使用。
3D立体摄像级具有在动态光环境中保持追踪精度的能力,可与视频分析技术配合使用。
安防领域——红外线摄像技术红外线摄像技术分为被动和主动两种类型。
被动型:拍摄对象自身发射红外光被摄像机接受以成像。这类设备昂贵并且对周围环境不能良好反映,所以在夜视系统中基本不采用。
主动型:配置有红外灯主动向外发射红外辐射,使红外摄像机接收反射回来的红外光,增强夜视能力。目前红外摄像机基本都配置LED红外发光二级管。
主动型红外摄像机包含摄像机、防护罩、红外灯、供电散热单元。它贴切的名称为红外线增强摄像机。感光元件的频谱足够宽时能对红外线到可见光的连续谱产生感应,形成包括红外线在内的光敏感。在普通可见光强下,宽范围感光元件增加了红外频段,在弱光条件下,也能获得清楚的图像。
安防领域——红外光成像红外线摄影术以成像为目标。伴随着电子与化学科技的进 展,红外线摄像技术逐渐演化出三个方向。
1.近红外线底片:感应范围为波长700nm~900nm。在成像乳剂中加入特殊染料,利用光化学反应,使这一波域的光变化转为化学变化从而形成影像。
2.近红外线电子感光材料:感应范围为波长700nm~2,000nm。利用含硅化合物晶体的光电反应形成电子信号, 进过进一步处产生影像。
3.中、远红外线线感应材料:感应范围为波长3,000nm~14,000nm。需要 使用冷却技术和特殊的光学感应器, 加工处理形成电子影像。
安防领域——全球市场规模全球红外摄像机设备市场规模在2017年近30亿美元,其中商用摄像机市场规模20亿美元,军用摄像机市场规模10亿美元。预计2016-2022年商用领域红外摄像机市场规模年均复合增长率为5.6%,军用领域的年均复合增长率为 8.8%。2022年市场总规模将近43亿美元。全球安防摄像机市场销量在2015年约28万件,其中监视摄像机约8万件,安保系统摄像机约20万个。预计到2021年安防摄像机市场销量约64万件,其中监视摄像机约22万件,年均复合增长率为18%,安保系统摄像机约42万个,年均复合增长率约13%。
图像传感器应用——医疗影像与其他具有更高产量和更高成本敏感性的市场相比,图像传感器在医疗影像市场应用有其鲜明的特点:其封装步骤通常由设备制造商控制。
图像传感器技术正逐渐在行业中创造颠覆性力量,从2014年开始,市场发展迅速,行业竞争加剧:韩国和中国出现更多新参与者,成为现有大型企业的潜在障碍,行业完全整合的可能性降低。图像传感器在医疗影像市场具有多元应用场景:X-ray、内窥镜、分子成像、光学相干断层扫描以及超声成像。
医疗影像——市场规模医疗成像设备行业是一个巨大的350亿美元的市场,2016-2022年预计复合年增长率达5.5%。
2016年,医疗传感器市场规模3.5亿美元,预计2016-2022年复合增长率8.3%,到2022年将达6亿美元。根据应用技术不同,医疗图像传感器可分为CCD, CIS,a-Si FPD(非晶硅薄膜晶体管平面探测器),a-Se FPD(非晶硒薄膜晶体管平板探测器),SiPM(硅光电倍增管)、cMUT(电容微机械超声换能器)和pMUT(压电微机械超声换能器)。
医疗影像——市场规模CMOS传感器凭借其在通过更小的像素尺寸获得更高分辨率、降低噪声水平和暗电流以及低成本方面的优越性在医疗影像领域得到越来越广泛的应用,未来市场看涨。
CCD市场保持稳定。医用a-Si FPD因其简单性和大面板内置能力仍应用广泛;SiPM专用于分子成像;cMUT用于超声成像,可提供更高分辨率,更高速度和实时3D成像。医疗影像——产业链目前,CMOS图像传感器主要应用于X-Ray以及内窥镜领域。
CIS医疗影像应用——X-RayX射线成像的第一次应用是在医疗领域,由Wilhelm于1895年完成。如今,X射线成像技术应用已拓展到工业无损检测(NDT)以及安全领域。但医疗市场仍是X-Ray射线成像的主力应用场景。
X-Ray探测设备市场规模
2018年X射线探测设备市场价值20亿美元,预计2018-2024年复合年增长率5.9%,2024年达到28亿美元。
2018年,医疗领域市值达14.8亿美元,占比约74%,预计2017-2024年复合增长率4.5%,2024年市值达19亿美元。目前,X射线成像几乎完全基于半导体技术。使用非晶硅(aSi)和CMOS的平板探测器占据了市场的最大份额,其次是硅光电二极管阵列探测器。预计铟镓锌氧化物(IGZO)平板将于2021年进入市场,直接与aSi和CMOS竞争,但CMOS仍然是主流应用。
2018年,以CMOS X-Ray成像设备市场收入2.45亿美元,预计2024年将增长到5.1亿美元,年复合增长率13%。
CIS医疗市场应用——内窥镜内窥镜检查不但能以最少的伤害,达成观察人体内部器官的目的,也能切取组织样本以供切片检查,或取出体内的异物。二十世纪末微创手术的发展进一步促进了内窥镜的应用。普通电子内窥镜:将微型图像传感器在内窥镜顶部代替光学镜头,通过电缆或光纤传输图像信息。电子内窥镜与光纤内窥镜类似,有角度调节旋钮、充气及冲水孔、钳道孔、吸引孔和活检孔等。
CMOS电子内窥镜:照明光源通过滤色片,变成单色光,单色光通过导光纤维直达电子内窥镜前部,再通过照明镜头照在受检体的器官粘膜。器官粘膜反射光信号至非球面镜头,形成受检部位的光图像,CMOS图像传感器接收光图像,将其转换成电信号,再由信号线传至视频处理系统,经过去噪、储存和再生,显示在监控屏幕上。CMOS电子内窥镜可得到高清晰度图像,无视野黑点弊端,易于获得病变观察区信息。CIS模块的小型化是其应用于医疗设备的关键,特别是对于较小的柔性视频内窥镜。如喉镜,支气管镜,关节镜,膀胱镜,尿道镜和宫腔镜。
小直径视频内窥镜发展历程背面照明(BSI)技术成功地提高了CIS模块的灵敏度,使得更小像素成为可能。
新开发的图像传感器封装(如硅通孔(TSV)技术)可最大限度地减少CIS模块所需的占位面积。
微电子器件微装配的进步也促进了CIS的小型化。
索尼图像传感器发展历程
发展CIS以来,索尼相继开发出背照式CIS,推出2层/3层堆叠技术,从数码相机市场切入手机传感器市场,抢占市场份额。
索尼图像传感器索尼将CCD推向世界后,一直在不断创新图像传感器。索尼公司正在推动小型高性能图像传感器的进一步发展:高灵敏度背光CMOS图像传感器和堆叠式CMOS图像传感器。索尼的图像传感器有助于提高全球数码相机的吸引力。索尼图像传感器应用在相机,移动终端,自动驾驶,安防,工业领域等多个领域。索尼Exmor——柱并联A/D转换电路Exmor是索尼2007年推出的一项新技术,用于片上模拟到数字信号转换,即由传统的外置ADC升级为内置ADC。
外置ADC传感器传输数据时,每列像素产生的信号先通过降噪电路,汇聚后再通过外部总线传输到单个或数个ADC之中。而Exmor每列像素都内置一个ADC,数量多,且可在低频下运行,可有效减少噪声,并实现高速提取。此外,内置ADC使得Exmor输出的数字信号,抗干扰性强,更易于长距离布线。IMX035是此系列推出的首款产品。
索尼Exmor R——背照式CIS2008年,索尼推出Exmor R系列,采用BIS(背照式)设计,是第一款推出该技术的传感器。FIS(FRONT-SIDE ILLUMINATED,前照式)结构下,Bayer阵列滤镜与光电二极管(Photo-diode)之间存在大量金属连线,阻隔了大量光线进入感光层。而在BIS结构下,金属连线被转移到光电二极管(Photodiode)的背面,光线不再被阻挡,信噪比大幅度提高,而且可以采用更复杂、更大规模电路来提升传感器读取速度。索尼Exmor RS——CIS堆栈技术二堆叠:2012年,索尼推出Exmor RS系列,该系列采用堆叠式结构(Stacked Structure)。BIS结构下,Bayer阵列周围依然存在大量电路,而此堆叠式结构通过TSV(Through Silicon Via,硅通孔)技术连接到另一张芯片,实现将信号处理电路叠放于像素区下方。
三堆叠:2017年2月,索尼宣布推出业内首个配备DRAM的三层堆叠式CIS,可在失真度最小化的情况下高速读取静态图片,支持在全高清模式下拍摄帧率最大为1000fps的慢动作视频。新款CIS在传统两层堆叠结构中间新加入DRAM层,用于缓存、读取、处理图像信息;此外,为了实现高速读取,用于将模拟视频信号从像素转换为数字信号的电路已经从2层结构倍增到4层结构。
索尼——相机端CISSLVS-EC是索尼与2018年开发的串行总线,单个通道带宽较高。但IMX410未采用堆栈技术,像素也不高。索尼半导体再没有提供高像素的全幅CIS,甚至取消了36MP的IMX-094,鉴于Z7、S1R存在,索尼半导体高像素全幅CIS可能改为定制提供。
索尼——相机端CIS应用介质格式传统上指静物摄影中的胶片格式以及使用胶片的相关照相机和设备。包括6x4.5厘米(有时介质格式称为“64格式”),6x6、6x7、6x8、6x12、6x17cm…在数字摄影中,介质格式是指根据介质格式胶片摄影使用而改编的照相机,或者是指使用大于35mm胶片框的传感器的照相机。此外,我们还发布了3.4(44x33毫米)和4.2(53x40毫米)型图像传感器,像素为100M或150M。
360度高质量成像主要产品为IMX533,9M像素,像素尺寸为3.76μm。索尼——移动端CISHDR解决方案有时间多路传输交错HDR方案及空间多路复用交错HDR方案。当不同的捕获时刻对象处于不同的位置时,时间复用交错HDR方案首次了解由于场景中的运动而产生的运动伪影(重影)。图像伪影的存在是因为每个捕获对象的分辨率的降低。而具有拆分像素(多个像素,每个像素即光电二极管分享同样的东西)可以减轻伪影的影响。索尼——移动端CIS应用稳定相机震动。高灵敏度传感器和短曝光时间是防止相机抖动和稳定图像的有效方法。背面照明传感器比正面照明传感器具有更高灵敏度。同样,在相同像素结构下具有更大的光学尺寸。
索尼CMOS图像传感器配备了标准的2x2平均模式,相当于比像素大四倍的像素大小,有助于在分辨率(图像大小)降低到1/4时防止相机抖动。高速视频。随着CIS像素数和速度的增加,高速视频拍摄成为现实。在拍摄快速移动物体时,需要降低帧速率和曝光时间以避免运动模糊。索尼通过4个像素的计算处理将其高灵敏度的BI技术将信噪比提高了两倍,使其能够以四倍的速度拍摄。
索尼的800万像素产品能够以180 fps(720p高清图像)或240 fps(960x540(Quaterhd)图像)轻松拍摄高速电影。适用产品:IMX219PQ

cmos图像传感器应用:图像传感器

收藏
查看我的收藏
0
有用+1
已投票
0
图像传感器
语音
编辑
锁定
讨论
上传视频
上传视频
图像传感器是利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号。与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。图像传感器分为光导摄像管和固态图像传感器。与光导摄像管相比,固态图像传感器具有体积小、重量轻、集成度高、分辨率高、功耗低、寿命长、价格低等特点。因此在各个行业得到了广泛应用。
[1]
中文名
图像传感器
外文名
image sensor
别    名
感光元件
分    类
CCD,CMOS
定    义
组成数字摄像头的重要组成部分
目录
1
CCD
?
应用
?
历史
?
特点
2
CMOS
?
特点
?
历史
?
市场
?
发展
3
技术参数
4
发展现状
图像传感器CCD
编辑
语音
CCD是应用在摄影摄像方面的高端技术元件,CMOS则应用于较低影像品质的产品中,它的优点是制造成本较CCD更低,功耗也低得多,这也是市场很多采用USB接口的产品无须外接电源且价格便宜的原因。尽管在技术上有较大的不同,但CCD和CMOS两者性能差距不是很大,只是CMOS摄像头对光源的要求要高一些,但该问题已经基本得到解决。CCD元件的尺寸多为1/3英寸或者1/4英寸,在相同的分辨率下,宜选择元件尺寸较大的为好。图像传感器又叫感光元件。
图像传感器应用
CMOS图像传感器
图像传感器
[2]
,或称感光元件,是一种将光学图像转换成电子信号的设备,它被广泛地应用在数码相机和其他电子光学设备中。早期的图像传感器采用模拟信号,如摄像管(video camera tube)。随着数码技术、半导体制造技术以及网络的迅速发展,市场和业界都面临着跨越各平台的视讯、影音、通讯大整合时代的到来,勾划着未来人类的日常生活的美景。以其在日常生活中的应用,无疑要属数码相机产品,其发展速度可以用日新月异来形容。短短的几年,数码相机就由几十万像素,发展到400、500万像素甚至更高。不仅在发达的欧美国家,数码相机已经占有很大的市场,就是在发展中的中国,数码相机的市场也在以惊人的速度在增长,因此,其关键零部件——图像传感器产品就成为当前以及未来业界关注的对象,吸引着众多厂商投入。以产品类别区分,图像传感器产品主要分为CCD、CMOS以及CIS传感器三种。本文将主要简介CCD以及CMOS传感器的技术和产业发展现状。
图像传感器历史
感光器件是工业摄像机最为核心的部件,图像传感器有CMOS和CCD两种。CCD特有的工艺,具有低照度效果好、信噪比高、通透感强、色彩还原能力佳等优点,在交通、医疗等高端领域中广泛应用。由于其成像方面的优势,在很长时间内还会延续采用,但同时由于其成本高、功耗大也制约了其市场发展的空间。CCD与CMOS在不同的应用场景下各有优势,但随着CMOS工艺和技术的不断提升,以及高端CMOS价格的不断下降,相信在安防行业高清摄像机未来的发展中,CMOS将占据越来越重要的地位。
CCD(Charged Coupled Device)于1969年在贝尔试验室研制成功,之后由日商等公司开始量产,其发展历程已经将近30多。CCD又可分为线型(Linear)与面型(Area)两种,其中线型应用于影像扫瞄器及传真机上,而面型主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。
图像传感器特点
一般认为,CCD传感器有以下优点:高解析度(High Resolution):像点的大小为μm级,可感测及识别精细物体,提高影像品质。从1寸、1/2寸、2/3寸、1/4寸到推出的1/9寸,像素数目从10多万增加到400~500万像素;低杂讯(Low Noise)高敏感度:CCD具有很低的读出杂讯和暗电流杂讯,因此提高了信噪比(SNR),同时又具高敏感度,很低光度的入射光也能侦测到,其讯号不会被掩盖,使CCD的应用较不受天候拘束;动态范围广(High Dynamic Range):同时侦测及分辨强光和弱光,提高系统环境的使用范围,不因亮度差异大而造成信号反差现象。良好的线性特性曲线(Linearity):入射光源强度和输出讯号大小成良好的正比关系,物体资讯不致损失,降低信号补偿处理成本;高光子转换效率(High Quantum Efficiency ):很微弱的入射光照射都能被记录下来,若配合影像增强管及投光器,即使在暗夜远处的景物仍然还可以侦测得到;大面积感光(Large Field of View):利用半导体技术已可制造大面积的CCD晶片,与传统底片尺寸相当的35mm的CCD已经开始应用在数码相机中,成为取代专业有利光学相机的关键元件;光谱响应广(Broad Spectral Response):能检测很宽波长范围的光,增加系统使用弹性,扩大系统应用领域;低影像失真(Low Image Distortion):使用CCD感测器,其影像处理不会有失真的情形,使原物体资讯忠实地反应出来;体积小、重量轻CCD具备体积小且重量轻的特性,因此,可容易地装置在人造卫星及各式导航系统上;低秏电力不受强电磁场影响;9. 电荷传输效率佳:该效率系数影响信噪比、解像率,若电荷传输效率不佳,影像将变较模糊;10. 可大批量生产,品质稳定,坚固,不易老化,使用方便及保养容易。根据In-Stat在2001时对全球图像传感器的研究报告中指出,CCD产业前七大厂商皆为日系厂商,占了全球98.5%的市场份额,在技术发展方面,较有特色的主要厂商应为索尼、飞利普和柯达公司。
图像传感器CMOS
编辑
语音
图像传感器特点
CMOS传感器采用一般半导体电路最常用的CMOS工艺,具有集成度高、功耗小、速度快、成本低等特点,最近几年在宽动态、低照度方面发展迅速。CMOS即互补性金属氧化物半导体,主要是利用硅和锗两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现基本的功能。这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。在模拟摄像机以及标清网络摄像机中,CCD的使用最为广泛,长期以来都在市场上占有主导地位。CCD的特点是灵敏度高,但响应速度较低,不适用于高清监控摄像机采用的高分辨率逐行扫描方式,因此进入高清监控时代以后,CMOS逐渐被人们所认识,高清监控摄像机普遍采用CMOS感光器件。CMOS针对CCD最主要的优势就是非常省电。不像由二级管组成的CCD,CMOS电路几乎没有静态电量消耗。这就使得CMOS的耗电量只有普通CCD的1/3左右,CMOS重要问题是在处理快速变换的影像时,由于电流变换过于频繁而过热,暗电流抑制的好就问题不大,如果抑制的不好就十分容易出现噪点。已经研发出720P与1080P专用的背照式CMOS器件,其灵敏度性能已经与CCD接近。与表面照射型CMOS传感器相比,背照式CMOS在灵敏度(S/N)上具有很大优势,显著提高低光照条件下的拍摄效果,因此在低照度环境下拍摄,能够大幅降低噪点。虽然以CMOS技术为基础的百万像素摄像机产品在低照度环境和信噪处理方面存在不足,但这并不会根本上影响它的应用前景。而且相关国际大企业正在加大力度解决这两个问题,相信在不久的将来,CMOS的效果会越来越接近CCD的效果,并且CMOS设备的价格会低于CCD设备。安防行业使用CMOS多于CCD已经成为不争的事实,尽管相同尺寸的CCD传感器分辨率优于CMOS传感器,但如果不考虑尺寸限制,CMOS在量率上的优势可以有效克服大尺寸感光原件制造的困难,这样CMOS在更高分辨率下将更有优势。另外,CMOS响应速度比CCD快,因此更适合高清监控的大数据量特点。
图像传感器历史
与CCD相比,CMOS具有体积小,耗电量不到CCD的1/10,售价也比CCD便宜1/3的优点。与CCD产品相比,CMOS是标准工艺制程,可利用现有的半导体设备,不需额外的投资设备,且品质可随著半导体技术的提升而进步。同时,全球晶圆厂的CMOS生产线较多,日后量产时也有利于成本的降低。另外,CMOS传感器的最大优势,是它具有高度系统整合的条件。理论上,所有图像传感器所需的功能,例如垂直位移、水平位移暂存器、时序控制、CDS、ADC…等,都可放在集成在一颗晶片上,甚至于所有的晶片包括后端晶片(Back-end Chip)、快闪记忆体(Flash RAM)等也可整合成单晶片(SYSTEM-ON-CHIP),以达到降低整机生产成本的目的。正因为此,投入研发、生产的厂商较多,美国有30多家,欧洲7家,日本约8家,韩国1家,台湾有8家。而居全球翘楚地位的厂商是Agilent(HP),其市场占有率51%、ST(VLSI Vision)占16%、Omni Vision占13%、现代占8%、Photobit约占5%,这五家合计市占率达93%。根据In-Stat统计资料显示,CMOS传感器的全球销售额到2004年可望突破18亿美元,CMOS将以62%的年复合成长率快速成长,逐步侵占CCD器件的应用领域。特别是在2013年快速发展的手机应用领域中,以CMOS图像传感器为主的摄相模块将占领其80%以上的应用市场。
图像传感器市场
CMOS图像传感器属于新兴产品市场,其市场占有率变化不如成熟产业那般恒常不变,例如在1999年时,CMOS市场中,按照出货比例排名依序为Agilent、OmniVision、STM和Hyundai,其市场占有率分别为24%、22%、14%和14%,其中STM是欧洲厂商,Hyundai是韩国厂商;但只经过一年后的市场竞争,Agilent和OmniVision出货排名顺序仍然分居一、二,且市场占有率分别提升到37.7%和30.8%,而STM落居第四,市场占有率大幅滑落至4.8%,至于Hyundai更是大幅衰退只剩2.1%的市场占有率,值得一提的是Photobi在2000年度的大幅成长,全球市场占有率快速成长至13.7%,排名全球第三。这三家厂商出货量就占全球出货量的82.2%。从中可以分析,这个产业的厂商集中度相当密集,所以观察上述三家厂商的动态和发展,可看出许产业和技术未来发展方向。Agilent主要的产品为第二代的CIF(352*288)HDCS-1020和第二代的VGA(640*480)HDCS-2020,主要应用在数码相机 、行动电话、PDA、PC Camera等新兴的资讯家电产品之中,此外Agilent在2000年另一成功策略是和Logitech与Microsoft这两家公司策略联盟,打入了光学鼠标产品领域,但是这是非常低阶的CMOS产品,而且不是为了捕捉影像 ,所以在做影像感测器的全球统计时并未将此数量一并加入,但是此举可看出Agilent以CMOS技术为基础进军光学元件的规划意图。OmniVision它主要的产品包括︰CIF(352 x 288)、VGA(640 x 480)、SVGA(800 x 600)和SXGA(1280 x 1024)。Omnivision开发的130万像素等级的CMOS图像传感器正在被业界大量应用在数码相机中。业界一般认为,百万像素为使用CMOS和CCD的分水岭,CMOS成功跨进这一市场,足以说明CMOS技术发展对市场的渗透度,未来可能将取代CCD成为中低档影像产品的不留应用。Omnivision在2001年5月开发的CIF(352 x 288)等级的CMOS传感器,其特色为低秏电,目标市场定位在移动电话上,其产品发展策略和各大研究调查机构不谋而合,在移动电话市场上,CMOS模组的摄相模块已经成为移动通讯应用的最大量产品。Photobit在2000年获得较大成功。2001年Photobit率先研发出PB-0330产品型号的CMOS图像传感器,此产品特色具备单一晶片逻辑转数位的变频器,它是第二代1/4寸的VGA(640 x 480),同时也推出PB-0111产品型号的CMOS影像感测器,是第二代1/5寸的CIF(352 x 288)。Photobit推出这两种产品主要针对数码相机和PC Camera的数位化产品,和OmniVision CIF(352 x 288)定位在行动电话市场上有所区隔,其推出CIF(352 x 288)和VGA(640 x 480)这两种不同解析程度的影像感测器,行销范围意图含盖低阶和中高阶市场。
图像传感器发展
2013年业界发展了CMOS图像传感器新技术--C3D。C3D技术的最大特点就是像素反应的均一性。C3D技术重新定义了成像器的性能(即把系统的整体性能包括在内)并提高了CMOS图像传感器在均一性和暗电流方面的标准性能。2014年初,美国Foveon公司公开展示了其最新发展的Foveon X3技术,立即引起业界的高度关注。Foveon X3是全球第一款可以在一个像素上捕捉全部色彩的图像传感器阵列。传统的光电耦合器件只能感应光线强度,不能感应色彩信息,需要通过滤色镜来感应色彩信息,我们称之为Bayer滤镜。而Foveon X3在一个像素上通过不同的深度来感应色彩,最表面一层感应蓝色、第二层可以感应绿色,第三层感应红色。它是根据硅对不同波长光线的吸收效应来达到一个像素感应全部色彩信息,已经有了使用这种技术的CMOS图像传感器,其应用产品是“Sigma SD9”数码相机。这项革新技术可以提供更加锐利的图像,更好的色彩,比起以前的图像传感器,X3是第一款通过内置硅光电传感器来检测色彩的。Foveon X3的技术对于传统半导体感光技术来说有很大的突破,也有颠覆传统技术的效果,相信Foveon X3会有很好的前景。在高分辨率像素产品方面,日前台湾锐视科技已领先业界批量推出了210万像素的CMOS图像传感器,而且已有美商与台湾的光学镜头厂合作,将在第三季推出此款CMOS传感器结合镜头的模组,CMOS应用已经开始在200万像素数码相机产品中应用。对比CCD提供很好的图像质量、抗噪能力和相机设计时的灵活性。尽管由于增加了外部电路使得系统的尺寸变大,复杂性提高,但在电路设计时可更加灵活,可以尽可能的提升CCD相机的某些特别关注的性能。CCD更适合于对相机性能要求非常高而对成本控制不太严格的应用领域,如天文,高清晰度的医疗X光影像、和其他需要长时间曝光,对图像噪声要求严格的科学应用。CMOS是能应用当代大规模半导体集成电路生产工艺来生产的图像传感器,具有成品率高、集成度高、功耗小、价格低等特点。CMOS技术是世界上许多图像传感器半导体研发企业试图用来替代CCD的技术。经过多年的努力,作为图像传感器,CMOS已经克服早期的许多缺点,发展到了在图像品质方面可以与CCD技术较量的水平。CMOS的水平使它们更适合应用于要求空间小、体积小、功耗低而对图像噪声和质量要求不是特别高的场合。如大部分有辅助光照明的工业检测应用、安防保安应用、和大多数消费型商业数码相机应用。
图像传感器技术参数
编辑
语音
了解CCD和CMOS芯片的成像原理和主要参数对于产品的选型时非常重要的。同样,相同的芯片经过不同的设计制造出的相机性能也可能有所差别。CCD和CMOS的主要参数有以下几个:1. 像元尺寸像元尺寸指芯片像元阵列上每个像元的实际物理尺寸,通常的尺寸包括14um,10um, 9um , 7um , 6.45um ,3.75um 等。像元尺寸从某种程度上反映了芯片的对光的响应能力,像元尺寸越小,能够接收到的光子数量越多,在同样的光照条件和曝光时间内产生的电荷数量越多。对于弱光成像而言,像元尺寸是芯片灵敏度的一种表征。2. 灵敏度灵敏度是芯片的重要参数之一,它具有两种物理意义。一种指光器件的光电转换能力,与响应率的意义相同。即芯片的灵敏度指在一定光谱范围内,单位曝光量的输出信号电压(电流),单位可以为纳安/勒克斯nA/Lux、伏/瓦(V/W)、伏/勒克斯(V/Lux)、伏/流明(V/lm)。另一种是指器件所能传感的对地辐射功率(或照度),与探测率的意义相同,。单位可用瓦(W)或勒克斯(Lux)表示。3. 坏点数由于受到制造工艺的限制,对于有几百万像素点的传感器而言,所有的像元都是好的情况几乎不太可能,坏点数是指芯片中坏点(不能有效成像的像元或相应不一致性大于参数允许范围的像元)的数量,坏点数是衡量芯片质量的重要参数。4. 光谱响应光谱响应是指芯片对于不同光波长光线的响应能力,通常用光谱响应曲线给出。从产品的技术发展趋势看,无论是CCD还是CMOS,其体积小型化及高像素化仍是业界积极研发的目标。因为像素尺寸小则图像产品的分辨率越高、清晰度越好、体积越小,其应用面更广泛。从上述二种图像传感器解析度来看,未来将有几年时间,以130万像素至200万像素为界,之上的应用领域中,将仍以CCD主流,之下的产品中,将开始以CMOS传感器为主流。业界分析2014年底至2015初,将有300万像素的CMOS上市,预测CMOS市场应用超越CCD的时机一般在2004年-2005年。
图像传感器发展现状
编辑
语音
图像传感器的视讯比是给定的,使用高清(HD)分辨率1080p,摄像机设计正朝使用更小的光学格式发展,导致需要更小的像素结构,以降低整体系统成本,同时不影响图像性能或光灵敏度。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像 传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱 光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。如果把CMOS图像传感器的光照灵敏度再提高5倍~10 倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低 等优点,如此,CMOS图像传感器就会取代CCD图像传感器,并且发展出更好的功效。由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了 极大的发展,并且随着经济规模的形成,其生产成本也得到降低。CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器 芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一 个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、 单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵 列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD 图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。
[3]
词条图册
更多图册
解读词条背后的知识
查看全部
小刀马
IT独立观察家,互联网金融观察家。
手机虽然没落了,但在图像传感器市场索尼还能独占鳌头
...
2019-08-0929
IT之家
青岛软媒网络科技有限公司,优质数码领域创作者
豪威发布 4000 万像素智能手机图像传感器 OV40A
IT之家1月8日消息 今日,豪威科技在国际消费类电子产品展览会之前发布了 OV40A。这款 4000 万像素、 1.0 微米像素尺寸的图像传感器采用超高增益和降噪技术,拥有 1/1.7 英寸光学格式。这款传感器还提供了多个高动态范围( HDR )选项,可捕捉静止图像和视频。...
2021-01-080
中国新闻网
中国新闻网官方帐号
三星电子业界首发1亿8百万像素手机图像传感器
中新网8月12日电 手机拍摄照片,视觉效果比人眼识别还清晰?三星最新手机图像传感技术,让梦想照进了现实。近日,三星电子推出手机图像传感器ISOCELL 亮 HMX,像素达1亿8百万,首次打破了手机图像传感器亿级像素的壁垒。像素数量业内最高 完美实现超高清摄影据悉,ISOCE...
2019-08-120
喵芯闻
共享交流电子行业资讯
这枚超大底的图像传感器究竟有多牛?
2021年3月30日,小米召开了春季新品发布会“生生不息”。本次的发布会号称是“最多新品”的一次发布会,因此也吸引了众多数码爱好者的目光。此次新品发布会为两场分两日进行,首日的发布会主要介绍了小米11系列的产品,包括小米11 pro、11 Ultra、11 青春版;而第二场...
2021-03-300
精致而苍老的小猪
游戏领域创作者
[科普]图像传感器
图像传感器(CIS)是利用光电效应(爱因斯坦 1921 年物理诺贝尔奖得奖作品)的机制,入射光进入物质之后转换成 电子-电洞对、进而转为数字化电压的器件。 它的前身是电荷藕合组件(CCD),但是 CIS 出现后,由于生产成本大幅降低,CIS 已经占有绝大部分的应用及市场。C...
2021-04-220
参考资料
1.

祝诗平.传感器与检测技术:北京大学出版社,中国林业出版社,2006年:209
2.

图像传感器最新新闻资讯
.OFweek传感器网[引用日期2016-07-21]
3.

图像传感器的发展及应用现状
.传感器应用网[引用日期2016-05-24]

cmos图像传感器应用:就算你的PCB布局很完美,我说改你就得改,因为我是甲方

据麦姆斯咨询报道,继2019年CMOS图像传感器市场持续火爆之后,一些不可预见的全新挑战正在悄然来临。CMOS图像传感器是智能手机和其它产品拍照功能的核心传感器,但现在正面临着像素间距缩小相关的工艺难题。与所有芯片产业一样,在新冠病毒疫情爆发期间,CMOS图像传感器的增长步伐也将有所放缓。
CMOS图像传感器制造的工艺问题
CMOS图像传感器采用8英寸和12英寸晶圆代工厂的成熟工艺制程,用于手机、汽车、消费电子产品、工业和医疗系统、安防摄像头。配置双摄像头和多摄像头的智能手机已是司空见惯,每个摄像头均需要集成一颗CMOS图像传感器将光转换为电信号以创建图像。
CMOS图像传感器外观示意图
智能手机搭载的CMOS图像传感器数量还将增加,为摄像头赋予高分辨率和丰富的功能。例如,三星最新款5G智能手机搭载了五个摄像头,其中一个是基于1.08亿像素(108MP)CMOS图像传感器的后置广角摄像头。这相当于要在如此小尺寸的芯片上集成超过1亿的像素。根据TechInsights介绍,其用于自拍的前置摄像头集成了一颗4800万像素的CMOS图像传感器,像素间距为0.7m,号称全球像素间距最小的CMOS图像传感器。CMOS图像传感器上集成了许多微小的光敏像素。像素间距指从一个像素中心到另一个像素中心的距离,以微米(m)为单位。并非所有手机都需要配备最先进的CMOS图像传感器,也并非所有消费者都乐于用手机拍照。但不可否认,消费者对更多成像功能的追求不会停止。UMC(联华电子)营销技术总监David Hideo Uriu表示,“从3G到4G,再到现在的5G,要求更高的带宽数据性能,也带动了对高质量摄像头需求的增长。除此以外,对更高像素和更佳分辨率的追求,都推动了CMOS图像传感器的市场热潮。智能手机在红外和近红外光谱的生物识别、3D传感、增强人类视觉等应用也逐渐得到关注。”CMOS图像传感器厂商仍面临一些挑战。多年来,他们一直在为减小像素间距而努力。这样,图像传感器的像素越多,分辨率也越高。但是,随着像素间距尺寸与光的波长越来越接近,像素缩小变得越来越困难。豪威科技(OmniVision)工艺工程副总裁Lindsay Grant表示:“现在研发团队必须找到新方法来避免灵敏度降低和传感器的串扰增加。”另一种趋势是CMOS图像传感器的像素大小保持不变,改进方向从减少像素尺寸转向提高图像质量。这个趋势与用户对更大手机屏幕、更佳拍照性能的需求一致,CMOS图像传感器的芯片尺寸则随之增加。尽管如此,图像传感器厂商已经找到了解决某些挑战的方法。如:(1)采用新工艺:高K薄膜和其它制造技术。(2)芯片堆叠和互连技术,将两颗不同功能的芯片堆叠起来并不是什么新鲜事。但是新的互连方案,例如像素与像素互连(pixel-to-pixel)工艺还处于开发阶段。
图像传感器市场动态
图像传感器主要分为两种:CMOS图像传感器(CIS)和电荷耦合器件(CCD)。CCD是电流驱动器件,主要用于数码相机和各种高端应用。CMOS图像传感器则有所不同。据东电电子(TEL)官网信息:“CMOS图像传感器的每个像素都有一个光电二极管和一个CMOS晶体管开关,实现每个像素信号的放大。”针对各种应用,CMOS图像传感器的格式、帧率、像素尺寸和分辨率也各有不同。图像传感器分为全局快门(Global Shutter)和卷帘快门(Rolling Shutter)。例如,豪威科技最近推出的0.8m 6400万像素图像传感器,实现1/1.7英寸格式。该传感器可提供静态图像捕获和4K视频性能,配备2x2微透镜相位检测自动(PHAF)对焦功能,可提高自动对焦精度,以每秒15帧(15fps)输出6400万像素画面。CMOS图像传感器厂商可分为两个阵营:无晶圆厂(fabless)和IDM。IDM拥有自己的晶圆厂,而fabless公司则委托晶圆代工厂制造。无论哪种方式,在晶圆上完成图像传感器芯片后,都需要将其切割并进行封装。根据Yole称,约有65%的图像传感器采用12英寸晶圆。“对安防、医疗和汽车等众多应用来讲,8英寸晶圆的CMOS图像传感器工艺制程仍然重要。”Lam Research(泛林半导体)战略营销部的总经理David Haynes说。索尼(Sony)是CMOS图像传感器厂商的霸主,其次是三星(Samsung)和豪威科技。根据IC Insights透露,其它重要厂商包括夏普(Sharp)、安森美(ON Semi)、意法半导体(STMicroelectronics)、格科微(GalaxyCore)、海力士(SK Hynix)、松下(Panasonic)和佳能(Canon)。根据IC Insights的数据,2019年CMOS图像传感器市场规模达到184亿美元,相比2018年增长30%。“我们预测2020年CMOS图像传感器市场规模将出现负增长(下降3%),最终的市场规模约178亿美元。受新冠疫情影响,手机和其它系统对CMOS图像传感器的需求下降,市场规模持续增长的曲线将出现拐点。”IC Insights的分析师Rob Lineback这样预测。
智能手机是CMOS图像传感器的主要市场。2018年平均每部手机有2.5个摄像头。“2019年,平均每部智能手机的摄像头数量已增加到2.8个。我们看到,到2020年,每部智能手机将配备三个摄像头。”Yole分析师Guillaume Girardin说。不同智能手机厂商对摄像头配置策略也不同。例如,苹果iPhone 11 Pro后置三摄配置为:1200万像素广角 + 1200万像素长焦 + 1200像素超广角。三星的5G手机配置了五个摄像头,包括四个后置摄像头和一个前置摄像头,其中一个为ToF摄像头,用于手势识别和3D物体识别。摄像头的高分辨率不一定等同于能拍出更好的照片。“这是像素尺寸和分辨率之间的博弈,”Girardin说,“像素减小意味着有更多像素。当分辨率超过4000万像素和5000万像素时,捕获细节的能力可能会超过肉眼。对于CMOS图像传感器来讲,拥有更高的量子效率(QE)和信噪比的像素才是决定图像质量优劣最重要的要素。”未来,虽然智能手机无法取代专业摄影师的数码单反相机。但显然,智能手机提供了比以往更多的功能。维易科(Veeco)产品营销高级经理Ronald Arif表示:“5G能带来更多带宽和潜在的应用,例如体育赛事的8K流媒体现场直播,实时AR(增强现实)、VR(虚拟现实)、MR(混合现实)游戏,这对手机用户的吸引力是无穷的。最新5G手机中的摄像头更加先进,整合了VCSEL的3D传感功能,可用于自动对焦或任何场所(如客厅)的3D投影映射(3D mapping)。可以想象,深度映射功能、5G与先进摄像头的组合会带来丰富的新应用(app),例如游戏、实时流媒体、远程学习和视频会议。”近红外(NIR)图像传感器是CMOS图像传感器厂商正在交付的创新产品。近红外图像传感器可以探测到物体可见光谱之外的波长,专为在昏暗或黑暗环境中工作的应用而设计。豪威科技最新推出的近红外技术Nyxel 2,使不可见的940nm近红外光谱内量子效率提高25%,而在几乎不可见的850nm近红外波长处的量子效率提高17%。索尼和Prophesee共同开发了基于事件的视觉传感器。这类传感器主要面向机器视觉应用,可在各种环境中探测到快速移动的物体。
像素尺寸缩小竞赛
几年前,CMOS图像传感器厂商之间所谓的像素缩小竞赛就已拉开帷幕。这里专指“像素间距”,即传感器中像素之间的距离。目标是(并且仍然是)在给定时间内减小每一代产品的像素间距。较高的像素密度等于更高的分辨率,但并非所有传感器都需要较小的间距。几年前,CMOS图像传感器的像素间距为7m。CMOS图像传感器厂商一直在致力于减小像素间距,但问题层出不穷。CMOS图像传感器的结构非常复杂。顶层为微透镜阵列,下一层是绿色、红色和蓝色阵列的彩色滤光片,接着是由捕获光线的光电二极管和其它电路组成的有源像素阵列。
CMOS图像传感器结构示意图
有源像素阵列由许多微小的单个感光像素组成。每个像素由光电二极管、晶体管和其它元件构成,像素大小以微米(m)为单位。像素尺寸越大的图像传感器,收集的光越多,信号越强。但图像传感器尺寸较大,会占用更多的电路板空间。像素尺寸较小的图像传感器,收集的光较少,但可以将更多的图像传感器封装在一起,从而提高分辨率。在晶圆代工厂中,图像传感器的制造流程有几种。其中一种简单制造流程中,像素阵列已完成。制备流程从对衬底的正面处理开始。晶圆与载片(carrier)或操作晶圆(handle wafer)键合在一起。对顶层进行注入工艺,再进行退火。在顶部涂上抗反射涂层,再完成彩色滤光片和微透镜阵列。在另一种简单制造流程中,对硅衬底表面进行注入。在顶部形成扩散阱和金属堆叠层。将晶圆翻转,在背面刻蚀出沟槽,在沟槽的侧壁进行隔离氧化层(liner)沉积并填充介电材料。最后在顶部完成滤光片和微透镜阵列。直到2009年,主流CMOS图像传感器均采用前照式(FSI)像素阵列结构。工作时,光线会照射到传感器正面。微透镜收集光并将其传输到彩色滤光镜。光穿过互连的堆叠并被二极管捕获。电荷在每个像素处被转换为电压,所有像素的信号被收集。多年以来,在CMOS图像传感器厂商的努力下,经历了多次迭代,像素间距不断减小。据TechInsights称,2006年像素间距为2.2m,2007年就减小到1.7m。2008年,像素间距为1.4m的FSI结构出现,再次打破了产业壁垒。约从2009年开始,CMOS图像传感器厂商开始采用一种新的结构:背照式(BSI)。BSI结构将图像传感器的光线入射方向从晶圆正面“反转”至背面。当光线从硅衬底的背面进入,光子经过光电二极管的路径更短,从而提高了量子效率。
前照式(FSI)CMOS图像传感器和背照式(BSI)CMOS图像传感器结构示意图
BSI结构可以进一步缩小像素尺寸。Lam的Haynes解释:“像素尺寸在1.2m至1.4m的范围内,BSI技术可实现最佳像素尺寸,而堆叠式BSI可使这个像素尺寸范围内的COMS图像传感器的占位面积保持在30平方毫米以下。亚微米尺寸的像素,可以实现四分之一像素格式,获得超过4800万像素的分辨率。”除了BSI技术,厂商还在对其它技术进行改进。图像传感器内的光电二极管(捕获光的关键元件)也在缩小,但会降低效率。而且二极管靠得更近,会产生串扰。在2010年左右,当像素间距达到1.4m时,CMOS图像传感器厂商在制造工艺的创新方向又一次发生了改变:深沟槽隔离(DTI)。DTI工艺的目标是使光电二极管“长得更高”,从而增加单位面积的容量。为了实现DTI工艺,厂商依然采用BSI结构,并通过各种工艺增加光电二极管的“高度”,同时要求增加二极管周围的硅的厚度。不过,像素尺寸的缩小速度已经放缓。曾经有一段时间,CMOS图像传感器厂商踩着每年缩小像素尺寸的节奏前行。但是,据TechInsights称,从1.4m(2008年)演进到1.12m(2011年),花了三年的时间,达到1m(2015年)耗费了四年,此后过了三年才达到0.9m(2018年)。TechInsights分析师Ray Fontaine在近期的博客中谈到:“总体来说,我们认为DTI和相关钝化方案的开发,是导致1.12m缩小到0.9m进程缓慢的主要原因。”最近,厂商已解决了这些问题。像素缩小竞赛的紧张气势再次燃起。2018年,三星突破了1m的技术壁垒,达到0.9m;索尼在2019年达到0.8m,在2020年又突破了0.7m。对于亚微米级像素,CMOS图像传感器行业需要更多的创新。Fontaine在最近的演讲中讲到“随着像素的缩小,需要更厚的有源(硅)来保证光电二极管尺寸。厚(硅)是DTI和相关高K钝化层的关键技术。”用高K薄膜制造的图像传感器与上述传统流程基本一致。不同之处在于,高K薄膜是沉积在DTI沟槽的隔离氧化层上面。对于高K工艺和其它工艺,厂商在晶圆代工厂中采用两种不同的方法:前DTI(F-DTI)和后DTI(B-DTI)。豪威科技的Grant解释:“F-DTI使用多晶硅填充间隙,多晶硅的电压偏置可以改善表面钉扎效应。F-DTI还可以进行更多的热处理以减少蚀刻损伤。B-DTI采用带负电荷的高K薄膜来积累电荷,在表面出现费米能级钉扎效应,从而抑制暗电流漏电。高K薄膜沉积采用原子层沉积(ALD)工艺完成。B-DTI通常使用氧化物填充间隙,也尝试了金属填充甚至空气间隙,并已用于批量生产。”像素缩小竞赛会继续进行吗?Grant认为:“像素尺寸很有可能小于0.7m。随着像素缩小到0.7m,需要优化的方面还很多。比如在B-DTI工艺中,对二极管的高能注入,彩色滤光镜和微透镜的光学结构缩小等关键项目仍将是发展重点。像素内晶体管和互连的基本设计规则需要更新。”另一个问题是移动设备中图像传感器的像素间距正在接近光的波长。Grant说:“有些人可能认为这是像素尺寸的极限。例如,研发0.6m的像素间距。它小于0.65m(650nm)的红光波长。因此可能会出现一个问题:‘为什么要缩小到亚波长?用户会受益吗?将像素缩小到亚波长意味着在像素级别空间分辨率信息更有价值。’”Grant指出,1.0m像素的光学结构使用了许多亚波长特征。“例如,用于抑制串扰的窄金属网格和用于量子效率改善的窄介电侧壁正在通过光的引导而进行改进。这种纳米光学工程已在现有像素技术领域应用多年,所以缩小到亚波长并非革命。持续缩小的局限,可能来自用户利益而不是技术。正是出于不断发现像素缩小为最终用户带来价值的目的,才推动着这一趋势。只有这样,CMOS图像传感器技术的开发才会继续支持这一方向。”
堆叠和互连技术
除了像素尺寸缩小以外,CMOS图像传感器还正在进行其它创新,例如芯片堆叠。厂商还使用不同的互连技术,例如硅通孔(TSV)、混合键合以及像素与像素互连(pixel-to-pixel)。
CMOS图像传感器技术趋势
多年来,图像传感器都将像素阵列和逻辑电路集成于同一颗芯片。2012年,索尼推出了两层堆叠式图像传感器。芯片堆叠使厂商可以将传感功能和处理功能拆分到不同的芯片。这允许传感器具有更多功能,同时还可以减小管芯尺寸。为此,索尼开发了90nm工艺的像素阵列芯片。该芯片堆叠在一颗65nm图像信号处理器(ISP)芯片上,该芯片提供处理功能。然后将两颗芯片互连。最终,其它厂商转向了类似的芯片堆叠方案。通常,顶部像素阵列芯片采用成熟节点工艺。底部ISP芯片的工艺节点涉及65nm、40nm和28nm。14nm FinFET(鳍式场效应晶体管)技术正在研发中。在2018年,三星和索尼同时开发了三层堆叠式图像传感器。例如,在索尼的CMOS图像传感器产品系列的一种版本中,DRAM(动态随机存取存储器)单元位于图像传感器和逻辑电路层之间。嵌入式DRAM可实现更快的数据读取。除了芯片堆叠之外,厂商还开发了不同的互连方案,该方案将一颗芯片与另一颗芯片互连。最初,豪威科技、三星和索尼使用硅通孔(TSV)技术。2016年,索尼转向了一种称为“铜混合键合”的互连技术。三星仍处于TSV阵营中,而豪威科技则同时采用TSV和混合键合两种工艺。在混合键合中,使用铜-铜互连连接管芯。在晶圆厂中对两片晶圆进行处理,一片是逻辑电路,另一片是像素阵列。使用电介质-电介质键合(dielectric-to-dielectric bond)将两片晶圆键合在一起,然后完成金属与金属的互连。TSV和混合键合均可实现精细的像素间距。Lam的Haynes说:“在CMOS图像传感器像素和逻辑电路两片晶圆堆叠的BSI结构,TSV和混合键合可能会继续共存。但是随着多层堆叠BSI图像传感器的发展,TSV集成将变得越来越重要。”谈起其它技术趋势。KLA(科天)营销高级总监Steve Hiebert说:“将来,我们有望看到与CMOS图像传感器芯片堆叠相关的两种趋势。首先是进一步缩小像素间距,以实现更高的芯片互连密度。另一种是三个或更多器件的堆叠。”pixel-to-pixel互连将是未来的“重磅炸弹”。Xperi正在开发一种称为“3D混合BSI”的技术,用于像素级集成。索尼和豪威科技已经展示了这项技术。Xperi产品营销高级总监Abul Nuruzzaman说:“3D混合BSI可以实现更多的互连。实现每个像素与关联的模数转换的像素级互连。这允许对所有像素进行并行的模数转换。该连接提供了堆叠像素层和逻辑电路层之间的高密度电气互连,从而实现了与有效百万像素数量一样多的模数转换器。混合键合还可以将堆叠式内存中的专有内存与对应像素的互连。”这种架构支持大规模并行信号传输,从而可以高速读取和写入图像传感器的所有像素数据。Nuruzzaman表示:“这可以为对时间要求非常严苛的各种应用(例如自动驾驶汽车、医学成像和高端摄影)提供实时比例缩放像素的全局快门和高分辨率成像。”
结论
显然,CMOS图像传感器市场是动态变化的。在新冠疫情爆发期间,对于CMOS图像传感器厂商而言,2020年将是艰难的一年。尽管如此,市场上还会涌现创新浪潮。IC Insights的Lineback表示:“嵌入式CMOS图像传感器和摄像头在安防、安全、基于视觉的用户界面和识别、物联网、自动驾驶汽车和无人机等更多系统中的应用前景依然可期。”
举报/反馈cmos图像传感器应用:CMOS图像传感器科普  第2张

cmos图像传感器应用:盘点CMOS图像传感器的5大主流应用

  图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产的图像传感器,即CMOS图像传感器。CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。
  CMOS图像传感器具有体积小、功耗低、价格低及可大规模批量生产等优势,在图像传感器领域占有率达到90%。被广泛应用于智能手机、数码相机、自动驾驶、安防、IOT等领域,未来市场潜力巨大。
  智能手机
  众所周知,移动端一直是CMOS图像传感器重要的市场。智能手机中广泛采用了双摄像头和3D摄像头,增加镜头有助于手机厂商在销售策略上与竞争产品拉出差距。厂商对相机模组的搭载,尤其是采用200万到500万低像素的功能镜头来增加产品的镜头数量更加积极。
  通常CMOS传感器又会分为:背照式CMOS传感器和堆栈式CMOS传感器。
  背照式CMOS传感器将光电二极管和布线层进行对调,从而让光线首先进入感光电二极管,从而增大感光量,显著提高低光照条件下的拍摄效果。像我们所熟知的iPhon、小米、魅族都是搭载的这类传感器。
  而堆栈式CMOS传感器则是背照式CMOS传感器的衍生产物,它是目前手机摄像头中应用最广泛的一种,也是最先进的一种,属于索尼的独家技术。
  而值得一提的是,感光元件只是手机类摄像头组成中不可或缺的一部分,但不是成像质量的决定性因素,这其中还包括厂商通过软件对硬件的优化调校,使其让人感觉最好的效果,这也是目前各家厂商在手机摄像画质方面效果差异最大的决定性因素之一。
  数码相机
  在数码相机领域的早期,CCD是无可争议的霸主,绝大部分数码相机都采用CCD成像,只有佳能在自己的高端单反相机型号上采用CMOS元件。不过近年来,CMOS发展势头迅猛,几乎已经在家用单反相机中一统江湖。
  CMOS的色彩饱和度和质感则略差于CCD,但处理芯片可以弥补这些差距。重要的是,CMOS具备硬件降噪机制,在高感光度下的表现要好于CCD。此外,它的读取速度也更快,非常省电,甚至具备了拍摄全高清(FullHD)视频的能力。
  这些特性特别适合性能较高的单反相机,因此目前市场中常见的单反数码相机几乎都采用了CMOS传感器。
  自动驾驶
  车载摄像头作为ADAS感知层的关键传感器之一,市场空间将快速提升,直接拉动CMOS市场规模的增长。
  CMOS图像传感器不仅被安装在汽车倒车影像、防碰撞系统之内,还是ADAS感知层的关键传感器之一,随着自动驾驶技术的发展,汽车厂商将会为自家车辆产品导入更多车载摄像头来获取外界信息。
  而每增加一个摄像头,就需要增加一块CMOS传感器,所以车载应用将是CMOS图像传感器各主要应用市场中增速最快的方向。
  根据YOLE的最新预测,车载图像传感器市场空间将从2016年的22亿美金增长至2022年的77亿美金,是车用传感器(包括各类雷达、压力传感器、惯性传感器等)中增长最快、占比最高的细分产品。
  同时,汽车市场也将成为仅次于手机的第二大CMOS传感器应用领域。
  安防
  安防监控离不开视觉信息的获取,必须依赖图像传感器,摄像头是视频监控前端的重要设备。随着整个安防监控行业规模的不断扩大,预估到2020年该领域CMOS图像传感器的市场规模将达到9.12亿美元,占到行业市场份额的6%。
  IOT
  在IOT领域,大量电子硬件设备需要搭载相机模组,实现影像、人脸识别、视频通话等功能。比如电视、智能音箱、无人机、VR/AR等产品。
  此外,在医疗、工业系统等领域也需要用到大量的CMOS图像传感器。现今医疗和科研领域则在谋求使用成本更低效果更好的CMOS传感器来替代大部分老旧产品;随着机器视觉的发展,越来越多的工业生产线会引入图像传感器来提高生产效率和质量。

下一篇: PLC、DCS、FCS三大控

上一篇: 电气控制线路图控制原