当前位置: 首页 > 传感测量产品 > 工业传感器 > 温度传感器

类型分类:
科普知识
数据分类:
温度传感器

温度传感器的优点:常见温度传感器及优缺点

发布日期:2022-10-09 点击率:52


温度传感器的优点:常见温度传感器及优缺点  第1张

温度传感器的优点:常见温度传感器及优缺点

原标题:常见温度传感器及优缺点

/// 专 业 的 工 业 传 感 与 测 量 搜 狐 号 ///

/ 前言 /

无论是哪种类型的传感器,所有温度传感器都要考虑以下四大因素:

对所测量的介质没有影响

不管测量什么,最重要的是要确保测量设备自身不会影响所测量的介质。进行接触温度测量时,这一点尤为重要。选择正确的传感器尺寸和导线配置是重要的设计考虑因素,以减少"杆效应"及其他测量错误。

非常精确

将对测量介质的影响降至最低之后,如何准确地测量介质就变得至关重要。准确性涉及传感器的基本特性、测量准确性等。如果未能解决有关"杆效应"的设计问题,再准确的传感器也无济于事。

响应即时(在多数情况下)

响应时间受传感器元件质量的影响,还会受到导线的一些影响。通常传感器越小,响应速度越快。

输出易于调节

使用微处理器后可以更轻松地调节非线性输出,因此传感器输出的信号调节也更不成问题。

/ 传感器的特性分析 /

上述每种主要类型的传感器的基本操作理论都有所不同,有各自的特性:

温度范围

每种传感器的温度范围也有所不同。热电偶系列的温度范围最广,跨越多个热电偶类型。

精度

精度取决于基本的传感器特性。所有传感器类型的精度各不相同,不过铂元件和热敏电阻的精度最高。一般而言,精度越高,价格就越高。

长期稳定性

由传感器随时间的推移保持其精度的一致程度来决定。稳定性由传感器的基本物理属性决定。高温通常会降低稳定性。铂和玻璃封装的绕线式热敏电阻是最稳定的传感器。热电偶和半导体的稳定性则最差。

输出变化

传感器输出依照类型而有所变化。热敏电阻的电阻变化与温度成反比,因此具有负温度系数(NTC)。铂等基金属具有正温度系数(PTC)。热电偶的千伏输出较低,并且会随着温度的变化而变化。半导体通常可以调节,附带各种数字信号输出。

线性度

线性度定义了传感器的输出在一定的温度范围内一致变化的情况。热敏电阻呈指数级非线性,低温下的灵敏度远远高于高温下的灵敏度。随着微处理器在传感器信号调节电路中的应用越来越广泛,传感器的线性度愈发不成问题。

电压或电流

通电后,热敏电阻和铂元件都需要恒定的电压或电流。功率调节对于控制热敏电阻或铂RTD中的自动加热至关重要。电流调节对于半导体而言不太重要。热电偶会产生电压输出。

响应时间

即传感器指示温度的速度,取决于传感器元件的尺寸和质量(假定不使用预测方法)。半导体的响应速度最慢,绕线式铂元件的响应速度是第二慢的。铂薄膜、热敏电阻和热电偶提供小包装,因此带有高速选件。玻璃微珠是响应速度最快的热敏电阻配置。

错误偏差

会导致温度指示有误的电噪声是使用热电偶时的一个主要问题。在某些情况下,电阻极高的热敏电阻可能是个问题。

导线电阻可能会导致热敏电阻或RTD等电阻式设备内出现错误偏差。使用低电阻设备(例如100Ω铂元件)或低电阻热敏电阻时,这种影响会更加明显。对于铂元件,使用三线或四线导线配置来消除此问题。对于热敏电阻,通常会通过提高电阻值来消除此影响。热电偶必须使用相同材料的延长线和连接器作为导线,否则可能会引发错误。

性价比

尽管热电偶是最廉价、应用最广泛的传感器,但NTC热敏电阻的性价比却往往是最高的。

/ 传感器的优势和劣势对比 /

热电偶传感器

热电偶传感器是一种自发电式传感器,测量时不需要外加电源,直接将被测量转换成电势输出,使用十分方便。它的测温范围很广:-270℃~2500℃,并具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。

热电偶传感器的缺点是灵敏度比较低,容易受到环境的信号干扰,也容易受到前置放大器温漂的影响,不适合测量微小的温度变化。

热电偶传感器的灵敏度与材料的粗细无关,非常细的材料也能够做成温度传感器。由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。

(赫斯曼接线型一体化温度传感器)

对一般的工业应用来说,为了保护感温元件避免受到腐蚀和磨损,总是装在厚厚的护套里面,外观显得笨大,对于温度的反应也迟缓得多。使用热电偶的时候,必须消除环境温度对测量带来的影响。有的把它的自由端放在不变的温度场中,有的使用冷端补偿抵消这种影响。当测量点远离仪表时,还需要使用补偿导线。

因此选择热电偶时需考虑下列因素:1、被测温度范围;2、所 需响应时间;3、连接点类型;4、热电偶或护套材料的抗化学腐蚀能力;5、抗磨损或抗振动能力;6、安装及限制要求等。

热敏电阻

热敏电阻(即“温度敏感型电阻器”)是一种高精度经济型温度测量传感器。按照温度系数分为NTC(负温度系数)和PTC(正温度系数)两种类型,NTC热敏电阻通常用于温度测量。

主要优势是:灵敏度:热敏电阻能随非常微小的温度变化而变化。精度:热敏电阻能提供很高的绝对精度和误差。成本:对于热敏电阻的高性能,它的性价比很高。坚固性:热敏电阻的构造使得它非常坚固耐用。灵活性:热敏电阻可配置为多种物理形式,包括极小的包装。密封:玻璃封装为其提供了密封的包装,从而避免因受潮而导致传感器出现故障。表面安装:提供各种尺寸和电阻容差。

(赫斯曼显示型一体化温度传感器)

热敏电阻的劣势中,通常只有自动加热是一个设计考虑因素。必须采取适当措施将感应电流限制在一个足够低的值,以便使自动加热错误降低到一个可接受的值。如果将热敏电阻暴露在高热中,将会导致永久性的损坏。

非线性问题可通过软件或电路来解决,会引发故障的潮湿问题可通过玻璃封装来解决。

电阻温度检测器(RTD)

RTD通常用铂金、铜或镍,它们的温度系数较大,随温度变化响应快,能够抵抗热疲劳,而且易于加工制造成为精密的线圈,尤其用铂金等金属制成时,RTD非常稳定,不受腐蚀或氧化的影响。RTD的测温原理是:纯金属或某些合金的电阻随温度的升高而增大,随温度降低而减小。电阻-温度变化关系最好是线性的,温度系数(温度系数的定义是单位温度引起的电阻变化)越大越好,而且要能够抵抗热疲劳,随温度变化响应灵敏。目前只有少数几种金属能够满足这样的要求。

(LLWD一体化温度传感器)

RTD还相对防止电气噪声,因此非常适合在工业环境中的温度测量,特别是在电动机、发电机及其它高压设备的周围使用。 RTD是目前最精确和最稳定的温度传感器。它的线性度优于热电偶和热敏电阻。但RTD也是响应速度较慢而且价格比较贵的温度传感器。因此,RTD最适合对精度有严格要求,而速度和价格不太关键的应用领域。

IC温度传感器

包括模拟输出和数字输出两种类型。

模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控测,不需要进行非线性校准,外围电路简单。

(LL-WS62插入式温湿度传感器)

数字温度传感器是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前有多种智能温度传感器系列产品,智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化和谐也取决于软件的开发水平。

(SBWZPK-230B防爆型温度传感器)

IC温度传感器有许多好处,包括:功耗低;可提供小型封装产品(有些尺寸小到0.8mm×0.8mm);还可在某些应用中实现低器件成本。此外,由于IC传感器在生产测试过程中都经过校准,因此没有必要进一步校准。

缺点就是温度范围非常有限, 也存在同样的自热、不坚固和需要外电源的问题。总之,温度IC提供产生正比于温度的易读读数方法,虽然便宜,但也受到配置和速度限制。数字输出IC温度传感器的响应速度慢,而模拟输出IC温度传感器的线性度很高。

返回搜狐,查看更多

责任编辑:
温度传感器的优点:常见温度传感器及优缺点  第2张

温度传感器的优点:常见温度传感器及优缺点_1

引言
利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有体。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。如果您要进行可靠的温度测量,就需要为您的应用选择正确的温度传感器。热电偶、热敏电阻、铂电阻(RTD)和温度 IC 是测试中最常用的温度传感器。

1 热电偶

热电偶是温度测量中最常用的传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,尤其最便宜。热电偶由在一端连接的两条不同金属线(金属 A 和金属 B)构成,如图 1 所示。当热电偶一端受热时,热电偶电路中就有电势差。可用测量的电势差来计算温度。

不过,电压和温度间是如图 2 所示的非线性关系,温度由于电压和温度是非线性关系,因此需要为参考温度(Tref)作第二次测量,并利用测试设备软件和∕或硬件在仪器内部处理电压 - 温度变换,以最终获得热偶温度(Tx)。AgilentA 和 A 数据采集器均有内置的测量了运算能力。

简而言之,热偶是最简单和最通用的温度传感器,但热偶并不适合高精度的应用。

2 热敏电阻
热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。

热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。

热敏电阻在两条线上测量的是绝对温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在 25℃时的阻值为 5kω,每 1℃的温度改变造成 200ω的电阻变化。注意 10ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。

2.1 测量技巧
热敏电阻体积小是优点,它能很快稳定,不会造成热负载。不过也因此很不结实,大电流会造成自热。由于热敏电阻是一种电阻性器件,任何电流源都会在其上因功率而造成发热。功率等于电流平方与电阻的积。因此要使用小的电流源。如果热敏电阻暴露在高热中,将导致永久性的损坏。

3 铂电阻温度传感器
与热敏电阻相似,铂电阻温度传感器(RTD)也是用铂制成的热敏感电阻。当通过测量电压计算 RTD 温度时,数字万用表用已知电流源测量该电流源所产生的电压。这一电压为两条引线(Vlead)上的压降加 RTD 上的电压(Vtemp)。例如,常用 RTD 的电阻为 100ω,每 1℃仅产生 0.385ω的电阻变化。如果每条引线有 10ω电阻,就将造成 26℃的测量误差,这是不可接受的。所以应对 RTD 作 4 线欧姆测量。

RTD 是最精确和最稳定的温度传感器 ,它的线性度优于热偶和热敏电阻。但 RTD 也是最慢和最贵的温度传感器。因此 RTD 最适合对精度有严格要求,而速度和价格不太关键的应用领域。

3.1 测量技巧
·使用 5mA 电流源会因自热造成 2.5℃的温度测量误差。因此把自热误差减到最小是极为重要的。

·4 线测量更为精确,但需要两倍的引线和两倍的开关。

4 温度 IC
温度集成电路(IC)是一种数字温度传感器 ,它有非常线性的电压∕电流 - 温度关系。有些 IC 传感器甚至有代表温度、并能被微处理器直接读出的数字输出形式。

4.1 两类具有如下温度关系的温度 IC
·电压 IC: 10 mV/K。

·电流 IC: 1μA/K。

温度 IC 的输出是非常线性的电压∕℃。实际产生的是电压∕Kelvin,因此室温时的 1℃输出约为 3V。温度 IC 需要有外电源。通常温度 IC 是嵌入在电路中而不用于探测。

温度 IC 缺点是温度范围非常有限, 也存在同样的自热、不坚固和需要外电源的问题。总之,温度 IC 提供产生正比于温度的易读读数方法。它很便宜,但也受到配置和速度限制。

4.2 测量技巧
·温度 IC 体积较大,因此它变化慢,并可能造成热负载。

·把温度 IC 用于接近室温的场合。这是它最流行的应用。虽然测量范围有限,但也能测量 150℃的高温。

5 结语
我们已讨论了各类常用温度传感器的优点和缺点。如果您了解必须的权衡,为您的应用仔细选择正确的传感器,您就能避免常见的缺憾而实现可靠的温度测量。

温度传感器的优点:温度传感器有什么优点

更懂你的升级 测试一汽-大众宝来280TSI
还记得宝来一开始是以什么身份引入中国的吗?2001年8月23日的下线,正式让大家体验到运动型轿车的乐趣,也正是因为这样,宝来有着“驾驶者之车”的宣传语。而接下来的17年,大众在顺应市场需求,让宝来一步一步向家用轿车靠拢。而17年后的今天,老伙伴带着人性化的升级迎来大改款,而开起来究竟是回归运动还是继续家用,我们一起看看。
1.4T售15.08万起是摆设? 新宝来怎么选
1.4T车型起售价直接拉到15万以上,但这个极别的买家们接受得了吗?会否两款1.4T车型成摆设?如果以一款A级车的标准来看,新一代宝来的指导价有点高了。
大众的“驾驶者之车” 试驾全新宝来280TSI
正如主标题所提到“大众的”,其实是笔者玩了个一语双关的小把戏罢了,我相信大多数人脑海中浮现的是一家总部位于德国沃尔夫斯堡的汽车制造公司——大众汽车。
公平竞争 四款紧凑型车谁更值得买?
  【太平洋汽车网 导购频道】随着经济的发展,国民的收入水平也随之提高,不少家庭都有了购买一辆家用车的打算。对于注重实用
家用贴心好选择 四款紧凑型车谁更值得推荐?
【太平洋汽车网 导购频道】因为收入的提升或者是B级车价格的下探,越来越多的人把选车的目光从A级车开始往上探。但即便如此,有关A级车市场地位仍然无法被动摇,只要你想要入手一台家用代步车,你就绕不开它。今天就给大家介绍四款比较全面的紧凑型车,希望能对上您的“胃口”。
广州车展 | 实拍赛力斯华为智选SF5
这么一台无续航焦虑,有着华为的深度参与和背书的赛力斯华为智选SF5,你喜欢吗?
除了换新LOGO 何小鹏还在活动上说了这些!
小鹏全新出发
广州车展重磅新车真香预警 总有一款是你的菜(下)
广州重磅新车(2)
丰田新款RAV4海外官图发布 外观配置均有所升级
11月13日,我们从海外媒体处获取了一组丰田官方发布的新款RAV4的车型图。
坦克500预计将于11月19日广州车展期间开启预售
近日,我们从官方处获悉,坦克500预计将于11月19日开幕的广州车展期间开启预售。
温度传感器的优点:常见温度传感器及优缺点  第3张

温度传感器的优点:温度传感器的性能及优缺点的分析

温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为“热电偶”。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。
热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。
温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。
接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。
  在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。
非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。
  在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数:式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。

下一篇: PLC、DCS、FCS三大控

上一篇: 电气控制线路图控制原

推荐产品

更多