当前位置: 首页 > 传感测量产品 > 工业传感器 > 光传感器

类型分类:
科普知识
数据分类:
光传感器

光传感器电路:光电传感器电路原理图解

发布日期:2022-10-09 点击率:71


光传感器电路:<a title=光电传感器电路原理图解 第1张" title="光传感器电路:光电传感器电路原理图解 第1张-传感器知识网"/>

光传感器电路:光电传感器电路原理图解

用光电传感器(光电对管)将机械旋转转化为电脉冲,光电对管实物如图1所示。

电路设计?
电路原理图如图2所示。

电路由四部分组成。?
光电对管U1、电阻R1、电阻R2构成发射接收电路;比较器U2A、电阻R3、电阻R4、电阻R5、电阻R6构成反相输入的滞回比较器;比较器U2B、电阻R7、电阻R8构成反相器;发光二极管D1、电阻R9构成输出电路。
光电传感器电路图
该电路可作为一个传感器,它可以触发一个没有直接接触的报警器。一个可见或不可见的封闭式离子源在传感器上发射来保持探测回路保持一个原本的常闭状态。

光电传感器电路原理图解
光电传感器是一种能够将可见光信号转换为电信号的器件,也可称为光电器件,主要用于光控开关,光控照明,光控报警领域中,对各种可见光进行控制。

光电传感器电路原理图
从上图可看出该光电传感器采用的是光敏电阻器作为光电元件,光敏电阻器是一种对光敏感的元件,其电阻值随入射光线的强弱发生变化而变化。
当环境光较强时,光电传感器RG的阻值较小,使可调电阻器RP与光电传感器RG处的分压值变低,不能达到双向触发二极管VD的触发电压值,双向触发二极管VD 截止,进而使双向了晶闸管VS也截止,照明灯EL熄灭。
当环境光较弱时,光电传感器RG的阻值变大,使可调电阻器RP与光电传感器RG处的分压值变高,随着光照强度的逐渐增强,光电传感器RG的阻值逐渐变大,当可调电阻器kP与光电传感器RG处的分压值达到双向触发二个极管VD的触发电压时,双向触发二极管VD导通,进而触发双向品闸管VS也导通,照明灯EL点亮。

光传感器电路:光电传感器电路原理图解  第2张

光传感器电路:基于一种可以测量光线强度的传感器电路设计

描述
人们越来越多地认为环境光是一种能源,可用于驱动心率监控器、浴室灯具、远程天气传感器和其他低功耗器件。对于能量采集系统,最关键的是精确测量环境光的能力。本设计思路将描述一种简单的低成本电路,可以根据环境光的强度按一定比例提供电压。
所用传感器是一款光敏电阻(LDR)——由RadioShack提供的276-1657型光敏电阻——其电阻随环境光强度而变化,如图1所示。其电阻值可从黑暗环境中的数百万ω降低至亮光环境中的几百ω。该传感器可以检测到光线水平的大小波动,能区分一个或两个灯泡的亮度、直射阳光、全黑或者中间水平。每种应用都需要适当的电路和物理设置,可能还需要进行一定的校准,以满足具体光照场合的需要。该传感器可以装在透明的防水外壳中,因此可用于各种天气条件下的任何作业现场。
图1.传感器电阻与光线强度的关系
图2.用简单电路测量光线强度
图2所示电路根据输入电压和光线强度产生输出电压,光敏电阻充当AD8226仪表放大器(in-amp)的增益电阻。AD8226传递函数为:
其中,G为电路增益, VIN+ 和 VIN–分别为正负输入的电压, VREF为 REF 引脚的电压。当负输入和REF引脚接地时,VIN+应用于正输入,增益为:
or
若LDR的值已知,则可转换成光照水平。因此,在已知输入电压的情况下,任务就变成了对仪表放大器输出进行监控。VIN+可以是交流电压、直流电压或电源的一部分。请注意,增益精度取决于两个内部调整薄膜电阻的精度。
这种电路通过将远程测量的光敏电阻值转换成电压,为环境光的测量提供了一种极具成本优势的解决方案。我们选择AD8226是因为它具有宽电源电压工作范围(2.7 V至36 V)、低静态电流(不到500 μA,全电源电压范围)、轨到轨输出和功能齐全等特性。该电路可使用任何增益电阻,从几ω到无穷大均可。日益下降的成本、不断提升的性能使仪表放大器成为运算放大器的理想替代产品。
图3所示为这种电路的典型响应,其中用100-mVp-p、900-Hz正弦波作为VIN+.从图中可以看出,LDR在明亮和黑暗环境中的值为~840 ω和~5500 ω。利用LDR的校准,可以将这些电阻值换算成光线水平。
图3.电路在明亮和黑暗环境条件下的房间中的性能
责任编辑;zl
打开APP阅读更多精彩内容
光传感器电路:光电传感器电路原理图解  第3张

光传感器电路:简单的环境光传感器电路

人们越来越多地认为环境光是一种能源,可用于驱动心率监控器、浴室灯具、远程天气传感器和其他低功耗器件。对于能量采集系统,最关键的是精确测量环境光的能力。本设计思路将描述一种简单的低成本电路,可以根据环境光的强度按一定比例提供电压。
所用传感器是一款光敏电阻(LDR)——由RadioShack提供的276-1657型光敏电阻——其电阻随环境光强度而变化,如图1所示。其电阻值可从黑暗环境中的数百万ω降低至亮光环境中的几百ω。该传感器可以检测到光线水平的大小波动,能区分一个或两个灯泡的亮度、直射阳光、全黑或者中间水平。每种应用都需要适当的电路和物理设置,可能还需要进行一定的校准,以满足具体光照场合的需要。该传感器可以装在透明的防水外壳中,因此可用于各种天气条件下的任何作业现场。
图1.传感器电阻与光线强度的关系图2.用简单电路测量光线强度
图2所示电路根据输入电压和光线强度产生输出电压,光敏电阻充当AD8226仪表放大器(in-amp)的增益电阻。AD8226传递函数为:
其中,G为电路增益, VIN+ 和 VIN–分别为正负输入的电压, VREF为 REF 引脚的电压。当负输入和REF引脚接地时,VIN+应用于正输入,增益为:
or
若LDR的值已知,则可转换成光照水平。因此,在已知输入电压的情况下,任务就变成了对仪表放大器输出进行监控。VIN+可以是交流电压、直流电压或电源的一部分。请注意,增益精度取决于两个内部调整薄膜电阻的精度。
这种电路通过将远程测量的光敏电阻值转换成电压,为环境光的测量提供了一种极具成本优势的解决方案。我们选择AD8226是因为它具有宽电源电压工作范围(2.7 V至36 V)、低静态电流(不到500 μA,全电源电压范围)、轨到轨输出和功能齐全等特性。该电路可使用任何增益电阻,从几ω到无穷大均可。日益下降的成本、不断提升的性能使仪表放大器成为运算放大器的理想替代产品。
图3所示为这种电路的典型响应,其中用100-mVp-p、900-Hz正弦波作为VIN+.从图中可以看出,LDR在明亮和黑暗环境中的值为~840 ω和~5500 ω。利用LDR的校准,可以将这些电阻值换算成光线水平。
图3.电路在明亮和黑暗环境条件下的房间中的性能

下一篇: PLC、DCS、FCS三大控

上一篇: 电气控制线路图控制原