当前位置: 首页 > 工业电子产品 > 无源元器件 > 二极管

类型分类:
科普知识
数据分类:
二极管

有机发光二极管(OLED)顶发射器件的透明电极

发布日期:2022-10-09 点击率:209

有机发光二极管(OLED)因其具有反应时间快、工作电压低、对比度高、可制成大尺寸和挠性面板等优点而成为研究热门[1~4]. 特别是近些年, OLED已广泛应用于手机(小屏)及电视(大屏)的显示面板上, 其中2016年中国市场上的手机显示采用OLED的已经达到9900万部, 77英寸大屏幕OLED电视也已经上市, 表明OLED显示时代的真正来临.

最初的OLED都是底发射型器件, 器件的结构从上至下依次是: 不透明的金属阴极/有机功能层/透明阳极, 光线从阳极出射, 因而称为底发射, 如图1(a)所示.

Figure 1

(Color online) Bottom (a) and top (b) emission OLED

Figure 2

Electrical model (a) and optical model (b) for DMD electrode

在主动显示中, OLED发光器件是由薄膜晶体管(TFT)来控制的, 因此如果器件是以底发射形式出光, 光经过基板的时候就会被基板上的TFT和金属线路阻挡, 从而影响实际的发光面积. 如果光线是从器件上方出射,那么基板的线路设计就不会影响器件的出光面积, 相同亮度下OLED的工作电压更低, 可以获得更长的使用寿命. 因此, 顶发射器件是小屏如手机等主动显示的首选. 顶发射型器件的结构是: 透明或者半透明的阴极/有机功能层/反射阳极[5], 如图1(b)所示. 在顶发射器件中, 透明电极的选择最为重要, 合适的透明电极将大幅度提高器件的性能.

透光性和导电性是评价透明电极的两个重要参数. 透光性能由膜层透过率T来决定, 可由分光光度计测得;导电性能常用方阻Rs表征, 可由四点阻值测试法测得. 对于透明电极来说, 良好的透光性能和优异的导电性能往往不能同时满足, 需要综合考虑, 表征光电综合性能的参数为ΦH=T10/Rs[6], 其中Rs为薄膜的方阻, 通常需要达到10–2的量级可满足应用需求. 下面主要就各类电极的透光性和导电性来介绍顶发射透明电极在OLED中的发展现状.

1 透明导电氧化物(TCO)电极

1.1 氧化铟锡(ITO)

导电金属氧化物, 最常用的是ITO, 其功函数在4.5~4.8eV左右[7], 一般用来作阳极的导电材料, 是一种相当稳定、导电性好而且透明的材料, 它的电阻率约为1×10–3~7×10–5Ωcm, 在可见光范围内的透过率接近90%. 因此, 第一个顶发射型OLED器件的阴极就是ITO[8].

通常情况下, ITO是通过磁控溅射的方式沉积在玻璃基板上. 成膜过程中, 高能的离子不断撞击玻璃衬底, 最终形成致密均一、透光性优良的晶态导电薄膜[9]. 然而, 当衬底上预先沉积好有机功能层薄膜的情况下, 高能粒子的轰击会严重破坏有机层, 给器件的性能带来不可逆的恶化. 为了解决这一问题, 在有机层/ITO间引入缓冲介质层. 缓冲介质层可分为无机层和有机层两类.

(ⅰ) 无机阻挡层. 1996年, Gu等人[8]首先使用10nm的Mg:Ag(30:1)加上40nm的ITO作为顶发射的阴极, 透过率在可见光的范围内大约为70%, 在8-hydroxyquinoline aluminum(Alq3)的发光峰530?nm处的透过率为63%. 器件的结构为: ITO/TPD(20nm)/Alq3(40 nm)/Mg:Ag(10nm)/ITO(40nm)(TPD为N,N′-Bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine), 因为是穿透式器件, 所以上下都可以出光, 每一侧的光强约为500?cd/m2 (10V工作电压), 外部量子效率为0.1%, 低于相同结构的传统底发射器件约0.25%. Mg和Ag是以共蒸的方式沉积到有机层的上方, 厚度小于光的趋肤深度, 用来加强电子的注入,同时保护下面的有机层. 为了避免溅射ITO造成有机层的损坏和电极的短路, 所使用溅射的功率只有5W, 沉积速率也只有0.05/s, 因此溅射40nm的ITO就要超过2h, 即使是低功率的溅射, 器件也有很大的漏电流, 溅射的过程中, 会将Mg氧化, 使得Mg:Ag/ITO界面的电阻增大, 启亮电压比传统底发射OLED器件升高了3V.

除了Mg:Ag-ITO透明阴极, Burrows等人[10]还研究了一系列金属-ITO的透明阴极, 如Ca-ITO, LiF/Al-ITO. 当金属层厚度为10nm的时候, Mg:Ag电极与Mg:Ag-ITO电极的透过率只有50%左右, 而LiF/Al-ITO电极透光率小于20%, 如果是Ca-ITO电极, 最大透过率要超过80%. 此外, 溅射过程中使用Ar等离子体, 能够减轻对有机层的损伤[11]. 当溅射原子经过Ar等离子体时, 高能量的原子会经过多次散射而降低能量, 因此, 增加Ar的压强(p)或者溅射靶材和基板之间的距离(L), 会减轻对有机层的破坏. 无机金属薄层在给有机层提供保护的同时, 可以使得界面形成良好的欧姆接触, 有利于载流子由电极至有机传输层的注入. 然而, 金属薄层会极大限制电极的透光性, 在Mg:Ag合金厚度为8?nm时, 电极的透光率甚至达不到50%, 这是增加金属阻挡层的缺点.

部分过渡金属氧化物(TMO)也可以蒸镀成膜, 用以形成TMO-ITO电极[12]. 2008年, Meyer等人[12]研究了WO3的保护作用, 相较于前述的金属阻挡层, 氧化物有更高透光率的优势, 可以有效降低微腔效应,同时, TMO有提升电极与有机层界面处载流子注入的能力. 实际上, Meyer等人报道的器件是ITO阴极/有机活性层/WO3-ITO阳极的倒置有机发光二极管(IOLED). 通过改变WO3层的厚度(~60nm)时, 器件ITO/Bphen:Li(40nm)/TPBi(5?nm)/TPBi:Ir(ppy)3(15 nm)/TCTA(40nm)/WO3(60 nm)/ITO(60nm) (Bphen为bathophenanthroline, TPBi为1,3,5-tris(1-phenyl-1H-benzimidazol- 2-yl)benzene, Ir(ppy)3为tris(2-phenylpyridine)iridium, TCTA为4,4′,4′′-tris(carbazol-9-yl)-triphenylamine)漏电流极低(10–4 mA/cm2), 穿透式OLED的透光率超过了75%, 功率效率达到30lm/W, 电流效率为38?cd/A.

(ⅱ) 有机阻挡层. 1998年, Forrest等人[13]使用了有机物来代替无机金属做阻挡层, 用以提高在可见光区的透过率, 选用的材料有3种, 酞菁铜(copper phthalocyanine, CuPc), 酞菁锌(zinc phthalocyanine, ZnPc), 苝的化合物(3,4,9,10-perlyenetetracarboxylic dianhydride, PTCDA), 结果发现ZnPc与CuPc的效果差不多, ZnPc和CuPc跟ITO之间的能垒比较大, 因此降低了注入效率, 器件的启亮电压从4.2V(Mg:Ag作为阴极的顶发射器件)升到5.2V. 换成PTCDA作阻挡层, 效果会更差, 启亮电压在20?V, 量子效率也只有ITO/CuPc作为阴极的器件的1%.

CuPc之所以有比较好的注入效率, 是因为溅射ITO的过程中形成了Cu-O键, 从而引进了很多中间能带和表面态, 电子的注入更加容易; 同时CuPc也起到了保护有机层的作用, 如果将CuPc的厚度从6?nm降到3nm, 器件漏电流增加. 此外, 在电极与有机层的界面引入很薄的Li(0.2nm)有助于提高电子注入, 通过对比ITO/CuPc/NPB/Alq3/CuPc/Li/ITO(NPB为N,N′-Bis-(1-naphthalenyl)-N,N′-bis-phenyl-(1,1′-biphenyl)-4,4′-diamine)和底发射ITO/CuPc/NPB/Alq3/Mg:Ag两种器件[14], 发现它们的电流-电压曲线很相似, 只有在10?mA/cm2以上的电流密度时, 前者的电压要高一些. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)同样可以作为有机保护层[15]. 在上述结构的器件中, 使用BCP替代CuPc, 外部量子效率会增加40%, 并且BCP的电子注入和电子输运能力比Alq3和CuPc要好, 以BCP/Li/ITO为电极,透射率在可见光区接近90%, ηext=1.0%.

有机物-ITO电极的缺点是在溅射ITO的过程中产生的热量会使有机物结晶, 这样就引起表面几何形貌的改变, 使得ITO电极与有机层间的接触恶化, 且有机阻挡层引入之后, 会给载流子带来新势垒, 使得激子复合区域向阴极一侧移动, 降低发光效率.

总的来说, 作为缓冲层, 希望满足: (1) 足够的透光性; (2) 一定的导电性; (3) 形成欧姆接触; (4) 成膜过程不破坏有机层; (5) 稳定性. 不论是无机金属还是有机物作为阻挡高能粒子的阻挡层都可以起到不错的效果, 减少器件的漏电流, 但它们在解决旧问题的同时又引入了新的问题: 金属层透光性不够, 有机物的引入会给载流子传输带来新势垒.

下一篇: PLC、DCS、FCS三大控

上一篇: 索尔维全系列Solef?PV

推荐产品

更多